The rule base on the fuzzy inference system (FIS) has a major role since the output generated by the system is highly dependent on it. The rule base is usually obtained from an expert but in this study proposed the rule base generated based on input-output data pairs with generating rule bases using lookup table scheme, then consequent part of each rule optimized with ordinary least square(OLS), so finally formed rule base from model FIS Takagi-Sugeno orde zero. The exchange rate dataset of EURO to USD is used for the development and validation of the system. In this study, 12 FISs were developed from a combination of linguistic values of n = 3,5,7, 9 with the number of lag (k) assumed to have an effect on output for k = 2,3,5. In training data, values R<sup>2</sup> ranged between 0.989 and 0.993, MAPE values ranged between 0.381% and 0.473% where the FIS with the combination of n = 9 and k = 5 has the best performance. In the testing data, values R<sup>2</sup> ranged between 0.203 and 0.7858, MAPE values ranged between 0.5136% and 0.9457% where FIS n = 3 and k = 2 perform best.
This paper proposes and examines the performance of a hybrid model called the wavelet radial bases function neural networks (WRBFNN). The model will be compared its performance with the wavelet feed forward neural networks (WFFN model by developing a prediction or forecasting system that considers two types of input formats: input9 and input17, and also considers 4 types of non-stationary time series data. The MODWT transform is used to generate wavelet and smooth coefficients, in which several elements of both coefficients are chosen in a particular way to serve as inputs to the NN model in both RBFNN and FFNN models. The performance of both WRBFNN and WFFNN models is evaluated by using MAPE and MSE value indicators, while the computation process of the two models is compared using two indicators, many epoch, and length of training. In stationary benchmark data, all models have a performance with very high accuracy. The WRBFNN9 model is the most superior model in nonstationary data containing linear trend elements, while the WFFNN17 model performs best on non-stationary data with the non-linear trend and seasonal elements. In terms of speed in computing, the WRBFNN model is superior with a much smaller number of epochs and much shorter training time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.