Nanocomposites have significantly contributed to biomedical science due to less aggregation behavior and enhanced physicochemical properties. This study synthesized a MnFe2O4@poly(tBGE-alt-PA) nanocomposite for the first time and physicochemically characterized it. The obtained hybrid nanomaterial was tested in vivo for its toxicological properties before use in drug delivery, tissue engineering fields, and environmental applications. The composite was biocompatible with mouse fibroblast cells and hemocompatible with 2% RBC suspension. This nanocomposite was tested on Drosophila melanogaster due to its small size, well-sequenced genome, and low cost of testing. The larvae’s crawling speed and direction were measured after feeding. No abnormal path and altered crawling pattern indicated the nonappearance of abnormal neurological disorder in the larva. The gut organ toxicity was further analyzed using DAPI and DCFH-DA dye to examine the structural anomalies. No apoptosis and necrosis were observed in the gut of the fruit fly. Next, adult flies were examined for phenotypic anomalies after their pupal phases emerged. No defects in the phenotypes, including the eye, wings, abdomen, and bristles, were found in our study. Based on these observations, the MnFe2O4@poly(tBGE-alt-PA) composite may be used for various biomedical and environmental applications.
Curcumin is a renowned drug for its numerous applications as an anti-inflammatory, anti-oxidant, anti-allergic, and anti-hyperglycemic agent. However, its clinical applications are limited because of its low physicochemical stability, solubility, cellular uptake, and rapid systemic clearance. Various nanoformulations have been proposed and characterized to upsurge curcumin's solubility and bioavailability. Nanomaterials have much potential to modulate the aggregation kinetics of several proteins, which may lead to the treatment option for several neurological disorders and act as a multi-therapeutic agent. The present study reports highly stable polymeric nanoparticles consisting of curcumin and polyvinylpyrrolidone, C-PVP, and further conjugated with gold nanoparticles, C-PVP-Au, were synthesized. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates for model protein, hen egg-white lysozyme (HEWL), was examined at pH and temperature-induced aggregation. The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 µg.mL-1 and 30 µg.mL-1, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 µg.mL-1 and 27 µg.mL-1, respectively. The antibacterial studies show significant antibacterial efficacy against Escherichia coli (E.coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. Membranes containing curcumin polymeric nanoparticles, gold nanoparticles, and polyvinyl alcohol (PVA) promote the antibacterial activity and wound healing activity to the wound of Drosophila. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au NP and C-PVP NP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and wound management systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.