Two mobile agents, starting at arbitrary, possibly different times from arbitrary nodes of an unknown network, have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. Agents have different labels which are positive integers. Each agent knows its own label, but not the label of the other agent. In traditional formulations of the rendezvous problem, meeting is accomplished when the agents get to the same node in the same round. We want to achieve a more demanding goal, called rendezvous with detection: agents must become aware that the meeting is accomplished, simultaneously declare this and stop. This awareness depends on how an agent can communicate to the other agent its presence at a node. We use two variations of the arguably weakest model of communication, called the beeping model, introduced in [8]. In each round an agent can either listen or beep. In the local beeping model, an agent hears a beep in a round if it listens in this round and if the other agent is at the same node and beeps. In the global beeping model, an agent hears a loud beep in a round if it listens in this round and if the other agent is at the same node and beeps, and it hears a soft beep in a round if it listens in this round and if the other agent is at some other node and beeps.We first present a deterministic algorithm of rendezvous with detection working, even for the local beeping model, in an arbitrary unknown network in time polynomial in the size of the network and in the length of the smaller label (i.e., in the logarithm of this label). However, in this algorithm, agents spend a lot of energy: the number of moves that an agent must make, is proportional to the time of rendezvous. It is thus natural to ask if bounded-energy agents, i.e., agents that can make at most c moves, for some integer c, can always achieve rendezvous with detection as well. This is impossible for some networks of unbounded size. Hence we rephrase the question: Can bounded-energy agents always achieve rendezvous with detection in boundedsize networks? We prove that the answer to this question is positive, even in the local beeping model but, perhaps surprisingly, this ability comes at a steep price of time: the meeting time of bounded-energy agents is exponentially larger than that of unrestricted agents. By contrast, we show an algorithm for rendezvous with detection in the global beeping model that works for bounded-energy agents (in bounded-size networks) as fast as for unrestricted agents.
Two mobile agents, starting at arbitrary, possibly different times from arbitrary locations in the plane, have to meet. Agents are modeled as discs of diameter 1, and meeting occurs when these discs touch. Agents have different labels which are integers from the set {0, . . . , L − 1}. Each agent knows L and knows its own label, but not the label of the other agent. Agents are equipped with compasses and have synchronized clocks. They make a series of moves. Each move specifies the direction and the duration of moving. This includes a null move which consists in staying inert for some time, or forever. In a non-null move agents travel at the same constant speed, normalized to 1.We assume that agents have sensors enabling them to estimate the distance from the other agent (defined as the distance between centers of discs), but not the direction towards it. We consider two models of estimation. In both models an agent reads its sensor at the moment of its appearance in the plane and then at the end of each move. This reading (together with the previous ones) determines the decision concerning the next move. In both models the reading of the sensor tells the agent if the other agent is already present. Moreover, in the monotone model, each agent can find out, for any two readings in moments t 1 and t 2 , whether the distance from the other agent at time t 1 was smaller, equal or larger than at time t 2 . In the weaker binary model, each agent can find out, at any reading, whether it is at distance less than ρ or at distance at least ρ from the other agent, for some real ρ > 1 unknown to them. Such distance estimation mechanism can be implemented, e.g., using chemical sensors. Each agent emits some chemical substance (scent), and the sensor of the other agent detects it, i.e., sniffs. The intensity of the scent decreases with the distance. In the monotone model it is assumed that the sensor is ideally accurate and can measure any change of intensity. In the binary model it is only assumed that the sensor can detect the scent below some distance (without being able to measure intensity) above which the scent is too weak to be detected.We show the impact of the two ways of sensing on the time of meeting, measured from the start of the later agent. For the monotone model we show an algorithm achieving meeting in time O(D), where D is the initial distance between the agents. This complexity is optimal. For the binary model we show that, if agents start at distance smaller than ρ (i.e., when they sense each other initially) then meeting can be guaranteed within time O(ρ log L), and that this time cannot be improved in general. Finally we observe that, if agents start at distance αρ, for some constant α > 1 in the binary model, then sniffing does not help, i.e., the worst-case optimal meeting time is of the same order of magnitude as without any sniffing ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.