Breast cancer (BC) in the Asia Pacific regions is enriched in younger patients and rapidly rising in incidence yet its molecular bases remain poorly characterized. Here we analyze the whole exomes and transcriptomes of 187 primary tumors from a Korean BC cohort (SMC) enriched in pre-menopausal patients and perform systematic comparison with a primarily Caucasian and post-menopausal BC cohort (TCGA). SMC harbors higher proportions of HER2+ and Luminal B subtypes, lower proportion of Luminal A with decreased ESR1 expression compared to TCGA. We also observe increased mutation prevalence affecting BRCA1, BRCA2, and TP53 in SMC with an enrichment of a mutation signature linked to homologous recombination repair deficiency in TNBC. Finally, virtual microdissection and multivariate analyses reveal that Korean BC status is independently associated with increased TIL and decreased TGF-β signaling expression signatures, suggesting that younger Asian BCs harbor more immune-active microenvironment than western BCs.
To elucidate the effects of neoadjuvant chemotherapy (NAC), we conduct whole transcriptome profiling coupled with histopathology analyses of a longitudinal breast cancer cohort of 146 patients including 110 pairs of serial tumor biopsies collected before treatment, after the first cycle of treatment and at the time of surgery. Here, we show that cytotoxic chemotherapies induce dynamic changes in the tumor immune microenvironment that vary by subtype and pathologic response. Just one cycle of treatment induces an immune stimulatory microenvironment harboring more tumor infiltrating lymphocytes (TILs) and up-regulation of inflammatory signatures predictive of response to anti-PD1 therapies while residual tumors are immune suppressed at end-of-treatment compared to the baseline. Increases in TILs and CD8+ T cell proportions in response to NAC are independently associated with pathologic complete response. Further, on-treatment immune response is more predictive of treatment outcome than immune features in paired baseline samples although these are strongly correlated.
The use of molecular signatures to add value to standard clinical and pathological parameters has impacted clinical practice in many cancer types, but perhaps most notably in the breast cancer field. This is, in part, due to the considerable complexity of the disease at the clinical, morphological and molecular levels. The adoption of molecular profiling of DNA, RNA and protein continues to reveal important differences in the intrinsic biology between molecular subtypes and has begun to impact the way patients are managed. Several bioinformatic tools have been developed using DNA or RNA-based signatures to stratify the disease into biologically and/or clinically meaningful subgroups. Here, we review the approaches that have been used to develop gene expression signatures into currently available diagnostic assays (e.g. OncotypeDX® and Mammaprint®), plus we describe the latest work on genome sequencing, the methodologies used in the discovery process of mutational signatures, and the potential of these signatures to impact the clinic.
Breast cancer metastasis to gynaecological organs is an understudied pattern of tumour spread. We explored clinico‐pathological and molecular features of these metastases to better understand whether this pattern of dissemination is organotropic or a consequence of wider metastatic dissemination. Primary and metastatic tumours from 54 breast cancer patients with gynaecological metastases were analysed using immunohistochemistry, DNA copy‐number profiling, and targeted sequencing of 386 cancer‐related genes. The median age of primary tumour diagnosis amongst patients with gynaecological metastases was significantly younger compared to a general breast cancer population (46.5 versus 60 years; p < 0.0001). Median age at metastatic diagnosis was 54.4, time to progression was 4.8 years (range 0–20 years), and survival following a diagnosis of metastasis was 1.95 years (range 0–18 years). Patients had an average of five involved sites (most frequently ovary, fallopian tube, omentum/peritoneum), with fewer instances of spread to the lungs, liver, or brain. Invasive lobular histology and luminal A‐like phenotype were over‐represented in this group (42.8 and 87.5%, respectively) and most patients had involved axillary lymph nodes (p < 0.001). Primary tumours frequently co‐expressed oestrogen receptor cofactors (GATA3, FOXA1) and harboured amplifications at 8p12, 8q24, and 11q13. In terms of phenotype conversion, oestrogen receptor status was generally maintained in metastases, FOXA1 increased, and expression of progesterone receptor, androgen receptor, and GATA3 decreased. ESR1 and novel AR mutations were identified. Metastasis to gynaecological organs is a complication frequently affecting young women with invasive lobular carcinoma and luminal A‐like breast cancer, and hence may be driven by sustained hormonal signalling. Molecular analyses reveal a spectrum of factors that could contribute to de novo or acquired resistance to therapy and disease progression.
Copy number alterations (CNAs) are thought to account for 85% of the variation in gene expression observed among breast tumours. The expression of cis-associated genes is impacted by CNAs occurring at proximal loci of these genes, whereas the expression of trans-associated genes is impacted by CNAs occurring at distal loci. While a majority of these CNA-driven genes responsible for breast tumourigenesis are cis-associated, trans-associated genes are thought to further abet the development of cancer and influence disease outcomes in patients. Here we present a network-based approach that integrates copy-number and expression profiles to identify putative cis-and trans-associated genes in breast cancer pathogenesis. We validate these cis-and trans-associated genes by employing them to subtype a large cohort of breast tumours obtained from the METABRIC consortium, and demonstrate that these genes accurately reconstruct the ten subtypes of breast cancer. We observe that individual breast cancer subtypes are driven by distinct sets of cis-and trans-associated genes. Among the cisassociated genes, we recover several known drivers of breast cancer (e.g. CCND1, ERRB2, MDM2 and ZNF703) and some novel putative drivers (e.g. BRF2 and SF3B3). siRNAmediated knockdown of BRF2 across a panel of breast cancer cell lines showed significant reduction in cell viability for ER-/HER2+ (MDA-MB-453) cells, but not in normal (MCF10A) cells thereby indicating that BRF2 could be a viable therapeutic target for ER-/HER2+ cancers. Among the trans-associated genes, we identify modules of immune-response (CD2, CD19, CD38 and CD79B), mitotic/cell-cycle kinases (e.g. AURKB, MELK, PLK1 and TTK), and DNA-damage response genes (e.g. RFC4 and FEN1). siRNA-mediated knockdown of RFC4 significantly reduced cell proliferation in estrogen receptor-negative normal breast and cancer lines, thereby indicating that RFC4 is essential for cancer cell survival but could also be a useful biomarker for aggressive (ER-negative) breast tumours. Availability: http://bioinformatics.org.au/tools-data/ under NetStrat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.