Background Whole-genome sequencing (WGS) is a powerful method for revealing the diversity and complexity of the somatic mutation burden of tumours. Here, we investigated the utility of tumour and matched germline WGS for understanding aetiology and treatment opportunities for high-risk individuals with familial breast cancer. Patients and methods We carried out WGS on 78 paired germline and tumour DNA samples from individuals carrying pathogenic variants in BRCA1 ( n = 26) or BRCA2 ( n = 22) or from non-carriers (non- BRCA1/2 ; n = 30). Results Matched germline/tumour WGS and somatic mutational signature analysis revealed patients with unreported, dual pathogenic germline variants in cancer risk genes ( BRCA1 / BRCA2 ; BRCA1 / MUTYH ). The strategy identified that 100% of tumours from BRCA1 carriers and 91% of tumours from BRCA2 carriers exhibited biallelic inactivation of the respective gene, together with somatic mutational signatures suggestive of a functional deficiency in homologous recombination. A set of non- BRCA1/2 tumours also had somatic signatures indicative of BRCA -deficiency, including tumours with BRCA1 promoter methylation, and tumours from carriers of a PALB2 pathogenic germline variant and a BRCA2 variant of uncertain significance. A subset of 13 non- BRCA1/2 tumours from early onset cases were BRCA-proficient, yet displayed complex clustered structural rearrangements associated with the amplification of oncogenes and pathogenic germline variants in TP53 , ATM and CHEK2 . Conclusions Our study highlights the role that WGS of matched germline/tumour DNA and the somatic mutational signatures can play in the discovery of pathogenic germline variants and for providing supporting evidence for variant pathogenicity. WGS-derived signatures were more robust than germline status and other genomic predictors of homologous recombination deficiency, thus impacting the selection of platinum-based or PARP inhibitor therapy. In this first examination of non- BRCA1/2 tumours by WGS, we illustrate the considerable heterogeneity of these tumour genomes and highlight that complex genomic rearrangements may drive tumourigenesis in a subset of cases.
The use of molecular signatures to add value to standard clinical and pathological parameters has impacted clinical practice in many cancer types, but perhaps most notably in the breast cancer field. This is, in part, due to the considerable complexity of the disease at the clinical, morphological and molecular levels. The adoption of molecular profiling of DNA, RNA and protein continues to reveal important differences in the intrinsic biology between molecular subtypes and has begun to impact the way patients are managed. Several bioinformatic tools have been developed using DNA or RNA-based signatures to stratify the disease into biologically and/or clinically meaningful subgroups. Here, we review the approaches that have been used to develop gene expression signatures into currently available diagnostic assays (e.g. OncotypeDX® and Mammaprint®), plus we describe the latest work on genome sequencing, the methodologies used in the discovery process of mutational signatures, and the potential of these signatures to impact the clinic.
Invasive lobular carcinoma (ILC) is the most common special type of breast cancer, and is characterized by functional loss of E-cadherin, resulting in cellular adhesion defects. ILC typically present as estrogen receptor positive, grade 2 breast cancers, with a good short-term prognosis. Several large-scale molecular profiling studies have now dissected the unique genomics of ILC. We have undertaken an integrative analysis of gene expression and DNA copy number to identify novel drivers and prognostic biomarkers, using in-house ( n = 25), METABRIC ( n = 125) and TCGA ( n = 146) samples. Using in silico integrative analyses, a 194-gene set was derived that is highly prognostic in ILC ( P = 1.20 × 10 −5 )—we named this metagene ‘LobSig’. Assessing a 10-year follow-up period, LobSig outperformed the Nottingham Prognostic Index, PAM50 risk-of-recurrence (Prosigna), OncotypeDx, and Genomic Grade Index (MapQuantDx) in a stepwise, multivariate Cox proportional hazards model, particularly in grade 2 ILC cases ( χ 2 , P = 9.0 × 10 −6 ), which are difficult to prognosticate clinically. Importantly, LobSig status predicted outcome with 94.6% accuracy amongst cases classified as ‘moderate-risk’ according to Nottingham Prognostic Index in the METABRIC cohort. Network analysis identified few candidate pathways, though genesets related to proliferation were identified, and a LobSig-high phenotype was associated with the TCGA proliferative subtype ( χ 2 , P < 8.86 × 10 −4 ). ILC with a poor outcome as predicted by LobSig were enriched with mutations in ERBB2 , ERBB3 , TP53 , AKT1 and ROS1 . LobSig has the potential to be a clinically relevant prognostic signature and warrants further development.
The homologous recombination deficiency (HRD) score was developed using whole-genome copy number data derived from arrays as a way to infer deficiency in the homologous recombination DNA damage repair pathway (in particular BRCA1 or BRCA2 deficiency) in breast cancer samples. The score has utility in understanding tumour biology and may be indicative of response to certain therapeutic strategies. Studies have used whole-exome sequencing to derive the HRD score, however, with increasing use of whole-genome sequencing (WGS) to characterise tumour genomes, there has yet to be a comprehensive comparison between HRD scores derived by array versus WGS. Here we demonstrate that there is both a high correlation and a good agreement between array- and WGS-derived HRD scores and between the scores derived from WGS and downsampled WGS to represent shallow WGS. For samples with an HRD score close to threshold for stratifying HR proficiency or deficiency there was however some disagreement in the HR status between array and WGS data, highlighting the importance of not relying on a single method of ascertaining the homologous recombination status of a tumour.
Background: Human epidermal growth factor receptor-4 (HER4) and yes-associated protein-1 (YAP) are candidate therapeutic targets in oncology. YAP’s transcriptional coactivation function is modulated by the HER4 intracellular domain (HER4-ICD) in vitro, but the clinical relevance of this has not been established. This study investigated the potential for targeting the HER4-YAP pathway in brain metastatic breast cancer. Methods: We performed immuno-phenotypic profiling of pathway markers in a consecutive breast cancer series with 25 years of clinical follow up ( n = 371), and patient-matched breast and metastatic brain tumours ( n = 91; 30 pairs). Results: Membrane localisation of phospho-HER4 [pHER4(Y1162)] was infrequent in primary breast cancer, but very frequent in brain metastases (5.9% versus 75% positive), where it was usually co-expressed with pHER3(Y1289) ( p < 0.05). The presence of YAP in tumour cell nuclei was associated directly with nuclear pERK5(T218/Y210) ( p = 0.003). However, relationships with disease-specific survival depended on oestrogen receptor (ER) status. Nuclear pYAP(S127) was associated with smaller, good prognostic ER+ breast tumours (log-rank hazard-ratio 0.53; p = 9.6E−03), but larger, poor prognostic triple-negative cancers (log-rank hazard-ratio 2.78; p = 1.7E−02), particularly when co-expressed with nuclear HER4-ICD ( p = 0.02). This phenotype was associated with stemness and mitotic instability markers (vimentin, SOX9, ID1, SPAG5, TTK, geminin; p < 0.05). YAP expression in brain metastases was higher than matched primary tumours; specifically, nuclear pYAP(S127) in ER-negative cases ( p < 0.05). Nuclear YAP was detected in ~70% of ER-negative, HER4-activated brain metastases. Discussion: Our findings suggest that the canonical-mechanism where Hippo pathway-mediated phosphorylation of YAP ostensibly excludes it from the nucleus is dysfunctional in breast cancer. The data are consistent with pYAP(S127) having independent transcriptional functions, which may include transducing neuregulin signals in brain metastases. Consistent with mechanistic studies implicating it as an ER co-factor, nuclear pYAP(S127) associations with breast cancer clinical outcomes were dependent on ER status. Conclusion: Preclinical studies investigating HER4 and nuclear YAP combination therapy strategies are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.