Sample entropy (SampEn) has been used to quantify the regularity or predictability of human gait signals. There are studies on the appropriate use of this measure for inter-stride spatio-temporal gait variables. However, the sensitivity of this measure to preprocessing of the signal and to variant values of template size (m), tolerance size (r), and sampling rate has not been studied when applied to “whole” gait signals. Whole gait signals are the entire time series data obtained from force or inertial sensors. This study systematically investigates the sensitivity of SampEn of the center of pressure displacement in the mediolateral direction (ML COP-D) to variant parameter values and two pre-processing methods. These two methods are filtering the high-frequency components and resampling the signals to have the same average number of data points per stride. The discriminatory ability of SampEn is studied by comparing treadmill walk only (WO) to dual-task (DT) condition. The results suggest that SampEn maintains the directional difference between two walking conditions across variant parameter values, showing a significant increase from WO to DT condition, especially when signals are low-pass filtered. Moreover, when gait speed is different between test conditions, signals should be low-pass filtered and resampled to have the same average number of data points per stride.
Quantized dynamical entropy (QDE) has recently been proposed as a new measure to quantify the complexity of dynamical systems with the purpose of offering a better computational efficiency. This paper further investigates the viability of this method using five different human gait signals. These signals are recorded while normal walking and while performing secondary tasks among two age groups (young and older age groups). The results are compared with the outcomes of previously established sample entropy (SampEn) measure for the same signals. We also study how analyzing segmented and spatially and temporally normalized signal differs from analyzing whole data. Our findings show that human gait signals become more complex as people age and while they are cognitively loaded. Center of pressure (COP) displacement in mediolateral direction is the best signal for showing the gait changes. Moreover, the results suggest that by segmenting data, more information about intrastride dynamical features are obtained. Most importantly, QDE is shown to be a reliable measure for human gait complexity analysis.
Background
Regularity, quantified by sample entropy (SampEn), has been extensively used as a gait stability measure. Yet, there is no consensus on the calculation process and variant approaches, e.g. single-scale SampEn with and without incorporating a time delay greater than one, multiscale SampEn, and complexity index, have been used to calculate the regularity of kinematic or kinetic signals. The aim of the present study was to test the discriminatory performance of the abovementioned approaches during single and dual-task walking in people with Parkinson’s disease (PD).
Methods
Seventeen individuals with PD were included in this study. Participants completed two walking trials that included single and dual-task conditions. The secondary task was word searching with twelve words randomly appearing in the participants’ visual field. Trunk linear acceleration at sternum level, linear acceleration of the center of gravity, and angular velocity of feet, shanks, and thighs, each in three planes of motion were collected. The regularity of signals was computed using approaches mentioned above for single and dual-task conditions.
Results
Incorporating a time delay greater than one and considering multiple scales helped better distinguish between single and dual-task walking. For all signals, the complexity index, defined as the summary of multiscale SampEn analysis, was the most efficient discriminatory index between single-task walking and dual-tasking in people with Parkinson's disease. Specifically, the complexity index of the trunk linear acceleration of the center of gravity distinguished between the two walking conditions in all three planes of motion.
Conclusions
The significant results observed across the 24 signals studied in this study are illustrative examples of the complexity index’s potential as a gait feature for classifying different walking conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.