This article formulates a near-lighting shapefrom-shading problem with a pinhole camera (perspective projection) and presents a solution to reconstruct the Lambertian surface of bones using a sequence of overlapped endoscopic images, with partial boundaries in each image. First we extend the shape-from-shading problem to deal with perspective projection and near point light sources that are not co-located with the camera center. Secondly we propose a multi-image framework which can align partial shapes obtained from different images in the world coordinates by tracking the endoscope. An iterative closest point (ICP) algorithm is used to improve the matching and recover complete occluding boundaries of the bone. Finally, a complete and consistent shape is obtained by simultaneously regrowing the surface normals and depths in all views. In order to fulfill our shape-from-shading algorithm, we also calibrate both geometry and photometry for an oblique-viewing endoscope that are not well addressed before in the previous literatures. We demonstrate the accuracy of our technique using simulations and experiments with artificial bones.
Sample entropy (SampEn) has been used to quantify the regularity or predictability of human gait signals. There are studies on the appropriate use of this measure for inter-stride spatio-temporal gait variables. However, the sensitivity of this measure to preprocessing of the signal and to variant values of template size (m), tolerance size (r), and sampling rate has not been studied when applied to “whole” gait signals. Whole gait signals are the entire time series data obtained from force or inertial sensors. This study systematically investigates the sensitivity of SampEn of the center of pressure displacement in the mediolateral direction (ML COP-D) to variant parameter values and two pre-processing methods. These two methods are filtering the high-frequency components and resampling the signals to have the same average number of data points per stride. The discriminatory ability of SampEn is studied by comparing treadmill walk only (WO) to dual-task (DT) condition. The results suggest that SampEn maintains the directional difference between two walking conditions across variant parameter values, showing a significant increase from WO to DT condition, especially when signals are low-pass filtered. Moreover, when gait speed is different between test conditions, signals should be low-pass filtered and resampled to have the same average number of data points per stride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.