Based on power line carrier communication technology, a decentralized multi-agent system (DMAS)-based frequency control strategy is proposed and investigated in this study on an autonomous microgrid with communication constraints, where each agent can only communicate with its neighboring agents. Using the optimized average consensus algorithm, the global information (i.e., total active power deficiency of the microgrid) can be accurately shared in a decentralized way. Depending on the discovered global information, the cooperative frequency control strategy, which involves primary and secondary frequency control and multistage load shedding, is executed to achieve a cooperative frequency recovery. Simulation results indicate that the proposed frequency control approach can guarantee the consensus and coordination of the distributed agents and maintain the frequency stability of islanded microgrids even in emergency conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.