The principles of fracture development during underwater blasting are examined based on explosion and impact dynamics, fluid dynamics, fracture dynamics, and field testing. The research reveals that the fracturing of the surrounding rock during underwater blasting is due to the combined action of shock and stress waves for the initial rock breakage and subsequent water expansion. The fracture development model for the surrounding rock of a drilling hole during underwater blasting is established. The rock fracturing range under the combined action of shock and stress waves is developed, as well as the fracture propagation rules after the wedging of the water medium into the fractures. Finally, the results of deep-hole underwater blasting tests on large rocks confirm the efficient utilization of explosive in the hole to improve the safety conditions. Accordingly, safe and static rock breaking under the detonation of high-effect explosive can be achieved. In addition, super-dynamic loading from the explosions and static loading from the water medium in the hole can be adequately combined for rock breaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.