The West Indian fruit fly, Anastrepha obliqua, is an important agricultural pest in the New World. The use of pesticide-free methods to control invasive species such as this reinforces the search for genes potentially useful in their genetic control. Therefore, the study of chemosensory proteins involved with a range of responses to the chemical environment will help not only on the understanding of the species biology but may also help the development of environmentally friendly pest control strategies. Here we analyzed the expression patterns of three OBP genes, Obp19d_2, Obp56a and Obp99c, across different phases of A. obliqua development by qPCR. In order to do so, we tested eight and identified three reference genes for data normalization, rpl17, rpl18 and ef1a, which displayed stability for the conditions here tested. All OBPs showed differential expression on adults and some differential expression among adult stages. Obp99c had an almost exclusive expression in males and Obp56a showed high expression in virgin females. Thereby, our results provide relevant data not only for other gene expression studies in this species, as well as for the search of candidate genes that may help in the development of new pest control strategies.
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Chagas disease is one of the main parasitic diseases found in Latin America and it is estimated that between six and seven million people are infected worldwide. Its etiologic agent, the protozoan Trypanosoma cruzi, is transmitted by triatomines, some of which from the genus Rhodnius. Twenty species are currently recognized in this genus, including some closely related species with low levels of morphological differentiation, such as Rhodnius montenegrensis and Rhodnius robustus. In order to investigate genetic differences between these two species, we generated large-scale RNA-sequencing data (consisting of four RNA-seq libraries) from the heads and salivary glands of males of R. montenegrensis and R. robustus. Transcriptome assemblies produced for each species resulted in 64,952 contigs for R. montenegrensis and 70,894 contigs for R. robustus, with N50 of approximately 2,100 for both species. SNP calling based on the more complete R. robustus assembly revealed 3,055 fixed interspecific differences and 216 transcripts with high levels of divergence which contained only fixed differences between the two species. A gene ontology enrichment analysis revealed that these highly differentiated transcripts were enriched for eight GO terms related to AP-2 adaptor complex, as well as other interesting genes that could be involved in their differentiation. The results show that R. montenegrensis and R. robustus have a substantial quantity of fixed interspecific polymorphisms, which suggests a high degree of genetic divergence between the two species and likely corroborates the species status of R. montenegrensis.
Several fruit flies species of the Anastrepha fraterculus group are of great economic importance for the damage they cause to a variety of fleshy fruits. Some species in this group have diverged recently, with evidence of introgression, showing similar morphological attributes that render their identification difficult, reinforcing the relevance of identifying new molecular markers that may differentiate species. We investigated genes expressed in head tissues from two closely related species: A. obliqua and A. fraterculus, aiming to identify fixed single nucleotide polymorphisms (SNPs) and highly differentiated transcripts, which, considering that these species still experience some level of gene flow, could indicate potential candidate genes involved in their differentiation process. We generated multiple libraries from head tissues of these two species, at different reproductive stages, for both sexes. Our analyses indicate that the de novo transcriptome assemblies are fairly complete. We also produced a hybrid assembly to map each species’ reads, and identified 67,470 SNPs in A. fraterculus, 39,252 in A. obliqua, and 6386 that were common to both species. We identified 164 highly differentiated unigenes that had a mean interspecific index (Dtrue¯) of at least 0.94. We selected unigenes that had Ka/Ks higher than 0.5, or had at least three or more highly differentiated SNPs as potential candidate genes for species differentiation. Among these candidates, we identified proteases, regulators of redox homeostasis, and an odorant-binding protein (Obp99c), among other genes. The head transcriptomes described here enabled the identification of thousands of genes hitherto unavailable for these species, and generated a set of candidate genes that are potentially important to genetically identify species and understand the speciation process in the presence of gene flow of A. obliqua and A. fraterculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.