Introduction of LTE-Advanced network brings a series of new techniques as well as an improvement of the existing ones, which contributes to better performance in relation to LTE network. Enhanced MIMO represents one of LTE-Advanced network's most significant techniques which enable considerably better performance. Spectral efficiency and throughput are important system performance indicators. The paper aims to estimate LTE-Advanced network performance by applying an enhanced MIMO. The results verify consistency with given the analytical values, as well as which system parameter has the greatest influence on the achieved results. When enhanced MIMO is applied, several performance testing scenarios have been created depending on the parameter which was analysed for the given scenario, namely: LTE-Advanced channel scenario, antenna configuration, number of HARQ retransmissions and the type of subframe mode.
This paper investigates the energy-efficient resource allocation algorithm for a massive multiple input multiple output (MIMO) system, in which each base station adapts the number of antennas to the daily load profile. Our paper examines the effect of two user location distribution (ULD) models, on the energy-efficiency (EE) of load adaptive masive MIMO system. We propose a resource allocation strategy to adapt the number of antennas based on tracking variations of ULD and cell loading maximizing the EE. We also evaluate impact of cell size, available bandwidth and output power level of the BS on EE at different cell loading.
Introduction of LTE-Advanced network brings a series of new techniques as well as an improvement of the existing ones, which contributes to better performance in relation to LTE network. Enhanced MIMO represents one of LTE-Advanced network's most significant techniques which enable considerably better performance. Spectral efficiency and throughput are important system performance indicators. The paper aims to estimate LTE-Advanced network performance by applying an enhanced MIMO. The results verify consistency with given the analytical values, as well as which system parameter has the greatest influence on the achieved results. When enhanced MIMO is applied, several performance testing scenarios have been created depending on the parameter which was analysed for the given scenario, namely: LTE-Advanced channel scenario, antenna configuration, number of HARQ retransmissions and the type of subframe mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.