Agriculture on earth is the biggest need for human sustenance. Over years, many farming methods and components have become computerized to guarantee quicker production with higher quality. Because of the enlarged demand in the farming industry, agricultural produce must be cultivated using an efficient process. Onion (Allium cepa L.) is an economically valuable crop and is the second-largest vegetable crop in the world. The spread of various diseases highly affected the production of the onion crop. One of the serious and most common diseases of onion worldwide is purple blotch. To compensate for a limited amount of training dataset of healthy and infected onion crops, the proposed method employs a pretrained enhanced InceptionV3 model. The proposed model detects onion disease (purple blotch) from images by recognizing the abnormalities caused by the disease. The suggested approach achieves a classification accuracy of 85.47% in recognizing the disease. This research investigates a novel approach for the rapid and accurate diagnosis of plant/crop diseases, laying the theoretical foundation for the use of deep learning in agricultural information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.