Angiotensin II (AII), found in seminal plasma, has been shown to stimulate capacitation in uncapacitated mammalian spermatozoa. The present study investigated the location of AII receptors on spermatozoa and AII's mechanism of action. AT1 type receptors for AII are present on the acrosomal cap region and along the whole of the flagellum of both mouse and human spermatozoa. Because combinations of low concentrations of AII and either calcitonin or fertilization-promoting peptide (FPP), both known to regulate the adenylyl cyclase (AC)/cAMP signal transduction pathway, elicited a significant response, this study investigated the hypothesis that these peptides act on the same pathway. AII was shown to significantly stimulate cAMP production in both uncapacitated and capacitated mouse spermatozoa and this was associated with increases in protein tyrosine phosphorylation. Using an anti-phosphotyrosine antibody to visualize the location of tyrosine phosphoproteins within individual cells, AII significantly stimulated phosphorylation within 20 min in both the head, especially in the acrosomal cap region, and the flagellum, especially in the principal piece, of uncapacitated mouse spermatozoa; combined AII 1 FPP was stimulatory within 5 min. In addition, Western blotting revealed that AII stimulation increased phosphorylation in a number of tyrosine phosphoproteins in both uncapacitated and capacitated mouse spermatozoa, with some being altered only in the latter category of cells. These results support the hypothesis that AII stimulates AC/cAMP in mammalian spermatozoa.
Abstract. When released into an appropriate environment, mammalian spermatozoa begin to capacitate and then continue until fully capacitated and able to fertilize. During capacitation in vitro, some cells 'over-capacitate' and undergo spontaneous acrosome reactions; this would be highly undesirable in vivo since already acrosome-reacted spermatozoa are non-fertilizing. Recent studies have revealed that seminal plasma contains several small molecules that bind to specific receptors on the sperm plasma membrane and act as 'first messengers', causing biologically important changes in availability of the 'second messenger' cAMP. Fertilization promoting peptide (FPP), calcitonin and adenosine all regulate cAMP production, stimulating it in uncapacitated spermatozoa and then inhibiting it in capacitated cells; in contrast, angiotensin II stimulates cAMP throughout capacitation. The molecules that regulate cAMP appear to do so via G protein-modulated changes in membrane associated adenylyl cyclases (mACs). Both mouse and human spermatozoa have been shown to have Gαs and Gαi2, as well as several isoforms of mAC, located in the same regions as the specific receptors. Thus spermatozoa possess the required elements for several separate signal transduction pathways, many of which regulate mAC/cAMP and so maintain sperm fertilizing ability. In vivo, such responses could increase the chances of successful fertilization.
Angiotensin II (AII) stimulates capacitation and fertilizing ability in mammalian spermatozoa, with the binding of AII to its receptors resulting in stimulation of cAMP production in both uncapacitated and capacitated cells. This study investigated possible mechanisms whereby AII affects cAMP availability. The first question was whether extracellular Ca 21 is required for responses in mouse spermatozoa and, using chlortetracycline fluorescence analysis, it was clear that cells responded to AII only when the medium contained CaCl 2 , with both 90 mM and 1.80 mM supporting a significant acceleration of capacitation. Consistent with those results, AII significantly stimulated cAMP production in both CaCl 2 -containing media tested, the response being greater in that containing 1.80 mM. Several different agents that might affect the signalling pathway stimulated by AII were then evaluated in uncapacitated suspensions. Chlortetracycline analysis revealed that pertussis toxin abolished responses to AII, suggesting the involvement of an inhibitory Ga subunit; dideoxyadenosine, a specific membrane-associated adenylyl cyclase (mAC) P-site inhibitor, also blocked responses, suggesting involvement of an mAC. cAMP determinations confirmed that both reagents also abolished AII's stimulation of cAMP. In contrast, nifedipine, a Ca 21 channel blocker, did not inhibit AII's effects on spermatozoa. Finally, in capacitated suspensions, both pertussis toxin and dideoxyadenosine were again shown to block AII's stimulation of cAMP. These results suggest that responses to AII involve an inhibitory G protein and an mAC, but it is likely that AII -receptor coupling does not stimulate directly mAC but rather does so in an indirect manner, perhaps by altering the intracellular Ca 21 concentration.Reproduction (2005) 129 211-218
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.