We analyze the impact of policing and socio-economic variables on crime in England and Wales during 1992-2007 using the quantile regression model which enables us to analyze different points of the crime distribution. The quantile regression model allows us to analyze whether or not the factors that affect crime do so in the same way for high and low crime areas. By using data from 43 police force areas, we examine how the effect of real earnings, unemployment, crime detection rate, income inequality and proportion of young people varies across high and low crime areas. Six crime categories are examinedburglary, theft and handling, fraud and forgery, violence against the person, robbery, and sexual assault. We find statistically significant differences in the impact of explanatory variables on various types of crime for low and high crime areas. For example, higher detection rate reduces crime but the effect is stronger in low crime areas. Further, we find opposing effects of earnings and unemployment across high and low crime areas which may explain why recessions may have no impact on crime or even lower it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.