Optimum reactive power dispatch (ORPD) significantly impacts the operation and control of electrical power systems (EPS) due to its undeniable benefit in the economic operation and reliability of the systems. ORPD is a sub-problem of optimal power flow (OPF). The main aim is to reduce/minimize the real power loss. Among the swarm intelligence (SI) metaheuristic algorithms is particle swarm optimization (PSO), which has fast convergence speed and gives the optimum solution to a particular problem by moving the swarm in the intensification (exploitation) search space. Also, the pathfinder algorithm (PFA) mimics the collective movement of the swarms with a leading member. Therefore, combining the fast convergence of PSO with PFA to form a hybrid technique is considered a viable approach in this study to avoid decreasing PFA searchability when the dimension of the problem increases. In this article, a hybrid algorithm based on a particle swarm optimization and pathfinder algorithm (HPSO-PFA) is proposed for the first time to study the combination of the control variables (generator voltage, transformer tap, and sizing of reactive compensation to obtain the objective function (total real power loss). The proposed method is tested on the IEEE 30 and 118 bus systems. The losses were reduced to 16.14262 MW and 107.2913 MW for the IEEE 30 and 118 test systems. Furthermore, the percentage (%) reduction for the IEEE 30 and 118 test systems are 9.8% and 19.25%, respectively. The result demonstrates the performance of HPSO-PFA gives a better solution than the other algorithms.
Part of the widely discussed problem in electrical power systems is the optimal reactive power dispatch (ORPD) due to its reliability and economical operation of electrical power systems. The ORPD is a complex and nonlinear optimization problem. The pathfinder algorithm (PFA) is a newly developed algorithm that inspires the group movement of prey with a leader called a pathfinder when hunting for food. The inertia weight is added to the PFA and is called an improved pathfinder algorithm (IPFA) to support the proper random work of the swarm to avoid the decrease in searchability of the PFA. The IPFA was proposed in this work to diminish the active power loss while improving the voltage profile. The IPFA was validated on the IEEE 30 and 118 bus systems along with particle swarm optimization (PSO) and the teaching–learning-based optimizer (TLBO). The proposed IPFA provides the best result as the losses of the IEEE 30 and 118 test systems were reduced to 16.035 and 115.048 MW from the initial base of 17.89 and 132.86 MW, respectively. The losses of PSO and the TLBO were 16.1568 and 16.1607 MW for the IEEE 30 bus system, respectively, while for the IEEE 118 bus system, the PSO provided 117.9129 MW and the TLBO provided 118.0524 MW. The two test systems’ reduction percentages (%) were 10.37% and 13.41%, respectively. The results were compared with those of other algorithms in the literature, and the IPFA provided a superior result, thereby suggesting the superiority of IPFA methods in diminishing the power loss and improving the system’s voltage profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.