Primary CNS melanomas are rare and they constitute about 1% of all cases of melanomas and 0.07% of all brain tumors. These tumors are aggressive in nature and may metastasise to other organs. Till date less than 25 cases have been reported in the literature. The primary treatment for local intraparenchymal tumours is complete resection and/or radiotherapy and it is associated with good survival. However once there is disease spread to leptomeninges the overall median survival is around 10 weeks. In this case report we describe a primary intracranial melanoma without any dural attachment in 16-year-old boy who had radical excision of the tumor followed by radiotherapy who eventually had rapidly developed leptomeningeal disease and review the literature with a focus on the clinic pathological, radiological, and treatment options.
BackgroundThe transcription factor NFκB is an important mediator of cell survival and inflammation in the immune system. In the central nervous system (CNS), NFκB signaling has been implicated in regulating neuronal survival following acute pathologic damage such as traumatic brain injury (TBI) and stroke. NFκB is normally bound by the principal inhibitory protein, IκBα, and sequestered in the cytoplasm. Activation of NFκB requires the degradation of IκBα, thereby freeing NFκB to translocate to the nucleus and activate the target genes. Mice deficient in IκBα display deregulated and sustained NFκB activation and early postnatal lethality, highlighting a critical role of IκBα in NFκB regulation.ResultsWe investigated the role of IκBα in regulating NFκB activity in the brain and the effects of the NFκB/IκBα pathway in mediating neuroinflammation under both physiological and brain injury conditions. We report that astrocytes, but not neurons, exhibit prominent NFκB activity, and that basal NFκB activity in astrocytes is elevated in the absence of IκBα. By generating mice with brain-specific deletion of IκBα, we show that IκBα deficiency does not compromise normal brain development. However, basal neuroinflammation detected by GFAP and Iba1 immunoreactivity is elevated. This leads to impaired inflammatory responses following TBI and worsened brain damage including higher blood brain barrier permeability, increased injury volumes and enlarged ventricle volumes.ConclusionsWe conclude that, in the CNS, astrocyte is the primary cell type subject to NFκB regulation. We further demonstrate that IκBα plays an important role in regulating NFκB activity in the brain and a robust NFκB/IκBα-mediated neuroinflammatory response immediately following TBI is beneficial.
Mild traumatic brain injury (mTBI) results in an estimated 75-90% of the 1.7 million TBI-related emergency room visits each year. Post-concussion symptoms, which can include impaired memory problems, may persist for prolonged periods of time in a fraction of these cases. The purpose of this study was to determine if an erythropoietin-mimetic peptide, pyroglutamate helix B surface peptide (pHBSP), would improve neurological outcomes following mTBI. Sixty-four rats were randomly assigned to pHBSP or control (inactive peptide) 30 lg/kg IP every 12 h for 3 days, starting at either 1 hour (early treatment) or 24 h (delayed treatment), after mTBI (cortical impact injury 3 m/sec, 2.5 mm deformation). Treatment with pHBSP resulted in significantly improved performance on the Morris water maze task. Rats that received pHBSP required 22.3 -1.3 sec to find the platform, compared to 26.3 -1.3 sec in control rats ( p = 0.022). The rats that received pHBSP also traveled a significantly shorter distance to get to the platform, 5.0 -0.3 meters, compared to 6.1 -0.3 meters in control rats ( p = 0.019). Motor tasks were only transiently impaired in this mTBI model, and no treatment effect on motor performance was observed with pHBSP. Despite the minimal tissue injury with this mTBI model, there was significant activation of inflammatory cells identified by labeling with CD68, which was reduced in the pHBSP-treated animals. The results suggest that pHBSP may improve cognitive function following mTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.