Poor indoor hygrothermal performance increases the risk of indoor moisture problems and deterioration due to mould growth, corrosion and damage to archival materials. Hence, proper control of indoor thermohygric intensity abates indoor moisture and its associated problems. This paper presents the results of envelopes hygrothermal performance assessments in a hot and humid climate building with varying operational profile between adjacent spaces. The case-studied building runs on 24hrs cooling mode in one part against natural and/or mechanical supply-exhaust fan means on the other. In-situ experiments were combined with hygrothermal analytical methods to assess the envelope thermal quality together with the operative conditions against condensation and mould growth risks. The results show that the building is overcooled leading to poor envelope hygrothermal performance with associated condensation and mould growth problems on non-air-conditioned sides of the envelopes.
I n d o o r m o ul d g r o w t h p r e di c tio n u si n g c o u pl e d c o m p u t a tio n al flui d d y n a m i c s a n d m o ul d g r o w t h m o d el Ol a d o k u n,
Abstract. Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling setpoints on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical ventilation systems under differential ventilation.
Abstract.As a response to the need to provide an acceptable thermal comfort and air quality in indoor environments, various ventilation performance indicators were developed over the years. These metrics are mainly geared towards air distribution, heat and pollutant removals. Evidence exists of influencing factors on these indicators as centered on ventilation design and operations. Unlike other indoor environments, health care environment requires better performance of ventilation system to prevent an incidence of nosocomial and other hospital acquired illnesses. This study investigates, using in-situ experiments, the ventilation efficiency in a dentistry surgical room. Thermal and hygric parameters were monitored on the air terminal devices and occupied zone over a period of one week covering both occupied and unoccupied hours. The resulting time-series parameters were used to evaluate the room's ventilation effectiveness. Also, the obtained parameters were benchmarked against ASHRAE 170 (2013) and MS1525 (2014) requirements for ventilation in health care environment and building energy efficiency respectively. The results show that the mean daily operative conditions failed to satisfy the provisions of both standards. Regarding effectiveness, the findings reveal that the surgical room ventilation is ineffective with ventilation efficiency values ranging between 0 and 0.5 indicating air distribution short-circuiting. These results suggest further investigations, through numerical simulation, on the effect of this short-circuiting on thermal comfort, infection risk assessments and possible design improvements, an endeavour that forms our next line of research inquiries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.