This study attempted to probe the role of complement activation in promoting acute myocardial infarction (AMI) induced by coronary artery ligation (CAL) in rats. The surgical technique used in this study significantly reduced early mortality (95% survival rate) and also reduced the variation in infarct size (33+/-1.87%) at 32 h after surgery. Time course studies on the initiation of AMI at various time points were carried out using physiological, biochemical, histopathological and electron microscopical techniques. Serum markers and activities of lysosomal hydrolases were found to be significantly elevated at the 8th hour post ligation. Histological studies showed polymorphonuclear cells emigration and total coagulation necrosis. Transmission electron micrograph exhibited mild distortion of muscle fibres and mitochondrial rupture with disrupted cristae. Immunoblotting studies confirmed the presence of alpha2-macroglobulin which supported the inflammatory response at 8th h of post ligation. The initiation of the complement (C) activation was observed by the increase in the level of the soluble form of the membrane attack complex (sC5b-9) in serum and left ventricle. Immunoexpression studies confirmed the initiation of the terminal C activation as shown by the expression of C5, C6, C7, C8, C9 and sC5b-9 complex at the 8th h of AMI. This study conclusively demonstrated that initiation of the C activation was observed to be significant at the 8th h of AMI induced by CAL in rats.
Platelet-derived endothelial cell growth factor (PDECGF) is a potent angiogenic peptide with anti-apoptotic activity expressed widely in tumours. However, its expression in myocardial infarction (MI) is not yet established. This study aimed to assess the myocardial expression of PDECGF in rats after MI. Extracellular matrix (ECM) remodeling plays an important role in angiogenesis; hence, changes in the ECM components were investigated in the myocardium after MI, which was induced in rats by coronary artery ligation (CAL) and verified using biochemical markers and histopathology. Immunohistochemistry, RT-PCR, and activity assays identified the expression pattern of PDECGF on days 1, 2, 4, 8, 16, and 32 after CAL. The levels of TNF-alpha, MMP-2, collagen, and glycosaminoglycans in the ECM were assessed. Studies on immunohistochemistry, RT-PCR, and PDECGF activity demonstrated elevated levels of PDECGF expression from day 2 after CAL. Macrophages, endothelial cells, fibroblasts, and cardiomyocytes, especially at the border region of the lesion, showed an enhanced expression for PDECGF. Remodeling of the ECM was depicted by changes in the levels of TNF-alpha, MMP-2, collagen, and GAG. Hence, this study clearly indicated PDECGF as an important angiogenic molecule expressed during MI and the alterations in ECM components facilitated the process of angiogenesis.
The aim of this study was to evaluate the time course events of cellular damage during myocardial ischemia and reperfusion injury in rats and to find out a correlation between the structural alterations with respect to the biochemical changes. Cardiac biomarkers and lysosomal enzymes viz. cathepsin D, acid phosphatase and beta-glucuronidase and matrix metalloproteinases (MMPs) were evaluated at different time points, in response to ischemia-reperfusion induced oxidative stress in an isolated rat heart model perfused in Langendorff mode. Microscopically, changes in myocardial architecture, myofibrillar degradation, and collagen (COL) integrity were studied using hematoxylin-eosin, Masson's trichrome and toluidine blue staining techniques. A three-fold increase in the level of myoglobin was observed after 30 min of ischemia followed by 120 min of reperfusion as compared to 15 min ischemia, 120 min reperfusion. Similarly, a significant increase (P<0.05) in the levels of lipid peroxides and superoxide anion coupled with a decrease in enzymatic and nonenzymatic antioxidant levels were observed. A concomitant increase in the activity of cathepsin D (24.07+/-0.95) and a higher expression of MMPs after 120 min of reperfusion following 30 min ischemia were shown to correlate with the myocardial damage as shown by histopathology, suggesting that free radical induced activation of cathepsin D and MMPs could mediate early damage during myocardial ischemia and reperfusion.
In vivo models of myocardial infarction induced by coronary artery ligation (CAL) in rats usually suffer from high early mortality and a low rate of induction. This study investigated the time course initiation of chronic myocardial infarction (CMI) in albino rats and the possibility of reducing early mortality rate due to myocardial infarction by modification of the surgical technique. CAL was carried out by passing the suture through the epicardial layer around the midway of the left anterior descending coronary artery including a small area of the myocardium to avoid mechanical damage to the heart geometry. In addition, the role of endothelin-1 (ET-1) in rat heart with congestive heart failure was critically assessed. Time course initiation experiments were designed by sacrificing the animals at different time intervals and by carrying out physiological, biochemical, histopathological, electron microscopical and immunohistochemical studies. Specific markers of myocardial injury, viz. cardiac troponin-T (cTnT), high sensitivity C-reactive protein, lactate dehydrogenase and fibrinogen were measured at different time points. Serum marker enzymes and activities of lysosomal hydrolases were found to be elevated on the eighth day post-ligation. Histopathological studies demonstrated focal areas showing fibrovascular tissue containing fibroblasts, collagenous ground substance and numerous small capillaries replacing cardiac muscle fibers. Transmission electron micrographs exhibited mitochondrial changes of well-developed irreversible cardiac injury, viz. swelling, disorganization of cristae, appearance of mitochondrial amorphous matrix densities, significant distortion of muscle fibers and distinct disruption of the intercalated discs. Immunoblotting studies confirmed the presence of alpha 2-macroglobulin which supported the inflammatory response. The severity of the CMI was inferred by the measurement of the level of ET-1 in plasma and left ventricle which was significantly higher in the CMI rats than in the sham-operated rats. Immunohistochemical studies at different time intervals showed that there was a significant immunoexpression of ET-1 on the eighth day post-ligation. This study conclusively showed that ligation of left anterior descending artery minimized mortality and ET-1 was expressed during CMI.
Objective: The main objective of this study is to standardise and evaluate traditional formulation both qualitatively and quantitatively on the basis of organoleptic characteristics, physical characteristics, physiochemical properties and phytochemical screening.Methods: Traditional formulation (TF) containing seven traditionally used herbs were collected from local areas and market. The plants were washed, air-dried and coarsely powdered. The aqueous extract was prepared as per literature, and various physiochemical, phytochemical screening was done.Results: The organoleptic character shows the drug with greenish colour, slightly bitter taste and characteristic odour. The physiochemical properties show the appropriate pH and the solubility of TF. Secondary metabolites like phenolic compounds and flavonoids are present abundantly in aqueous extract than in other extracts.Conclusion: Our studies suggests that TF contains medicinally important secondary metabolites which has disease protective properties. This study will help in the progression of a suitable monograph, determining the quality and purity of a crude extract and laying down pharmacopoeia standards for the formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.