Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal − ) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal + ) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal − ) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42°C. Milk was fermented in combination with Gal − L. delbrueckii subsp.bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal − NCDC 218(0.79 %).
The present work reports a new route for preparing tunable multifunctional biomaterials through the combination of synthetic biology and material chemistry. Genetically encoded catechol moiety is evolved in a nanofiber mat with defined surface and secondary reactive functional chemistry, which promotes self-assembly and wet adhesion property of the protein. The catechol moiety is further exploited for the controlled release of boric acid that provides a congenial cellular microenvironment for accelerated wound healing. The presence of 3,4-dihydroxyphenylalanine in the nanofiber mat act as a stimulus to trigger cell proliferation, migration, and vascularization to accelerate wound healing. Electron paramagnetic resonance, NMR, FTIR, and circular dichroism spectroscopy confirm the structural integrity, antioxidant property, and controlled release of boric acid. Fluorescent and scanning electron microscopy reveals the 3D architecture of nanofiber mat, which favors fibroblast growth, endothelial cell attachment, and tube formation, which are the desirable properties of a wound-healing material. Animal studies in the murine wound healing model assert that the multifunctional biomaterial significantly improve re-epithelialization and accelerate wound closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.