Android has grown to be the world's most popular mobile platform with apps that are capable of doing everything from checking sports scores to purchasing stocks. In order to assist researchers and developers in better understanding the development process as well as the current state of the apps themselves, we present a large dataset of analyzed open-source Android applications and provide a brief analysis of the data, demonstrating potential usefulness. This dataset contains 1,179 applications, including 4,416 different versions of these apps and 435,680 total commits. Furthermore, for each app we include the analytical results obtained from several static analysis tools including Androguard, Sonar, and Stowaway.In order to better support the community in conducting research on the security characteristics of the apps, our large analytical dataset comes with the detailed information including various versions of AndroidManifest.xml files and synthesized information such as permissions, intents, and minimum SDK. We collected 13,036 commits of the manifest files and recorded over 69,707 total permissions used. The results and a brief set of analytics are presented on our website: http://androsec.rit.edu.
Although testing often accounts for 50% of the budget of a typical software project, the subject of software testing is often overlooked in computing curriculum. Students often view testing as a boring and unnecessary task, and education is usually focused on building software, not ensuring its quality. Previous works have focused on either making the subject of testing more exciting for students or on a more potent lecture-based learning process.At the Department of Software Engineering at the Rochester Institute of Technology, recent efforts have been focused on the project component of our Software Testing course as an area of innovation. Rather than previous methods such as a tightly controlled and repetitive testbed, our students are allowed to choose a real-world, open source project to test throughout the term. With the instructor as both counsel and client, students are expected to deliver a test plan, a final report, and several class-wide presentations.This project has achieved significant student praise; qualitative and quantitative feedback demonstrates both increased satisfaction and fulfilled curricular requirements. Students enjoy the real-world aspect of the project and the ability to work with relevant applications and technologies. This paper outlines the project details and educational goals.
Studies indicate that much of the software created today is not accessible to all users, indicating that developers don't see the need to devote sufficient resources to creating accessible software. Compounding this problem, there is a lack of robust, easily adoptable educational accessibility material available to instructors for inclusion in their curricula. To address these issues, we have created five Accessibility Learning Labs (ALL) using an experiential learning structure. The labs are designed to educate and create awareness of accessibility needs in computing. The labs enable easy classroom integration by providing instructors with complete educational materials including lecture slides, activities, and quizzes. The labs are hosted on our servers and require only a browser to be utilized.To demonstrate the benefit of our material and the potential benefits of our experiential lab format with empathy-creating material, we conducted a study involving 276 students in ten sections of an introductory computing course. Our findings include: (I) The demonstrated potential of the proposed experiential learning format and labs are effective in motivating and educating students about the importance of accessibility (II) The labs are effective in informing students about foundational accessibility topics (III) Empathy-creating material is demonstrated to be a beneficial component in computing accessibility education, supporting students in placing a higher value on the importance of creating accessible software. Created labs and project materials are publicly available on the project website: http://all.rit.edu
Software engineering is largely a communicationdriven, team-oriented discipline. There are numerous hurdles for ensuring proper communication and interaction between all project stakeholders, including physical, technological, and cultural barriers. These obstructions not only affect software engineering in industry, but in academia as well. One possible issue that is often overlooked in software engineering education is how to best educate Deaf and hard-of-hearing (Deaf/HoH) students, and how to fully engage them in the classroom. In this paper, we present our experiences in teaching software engineering to Deaf/HoH students. In the classroom, these students work very closely in activities and on project teams with their hearing peers. We also present recommendations for creating a more robust software engineering educational experience for not only Deaf/HoH students, but for hearing students as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.