We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd2Ir2O7 upon hole-doping via substitution of Ca 2+ for Nd 3+ . Ca substitution mediates a fillingcontrolled Mott-like transition with minimal resolvable structural changes and without altering site symmetry. Local structure confirms that Ca substitution does not result in local chemical phase separation, and absorption spectroscopy establishes that Ir cations maintain a spin-orbit entangled electronic configuration. The metal-insulator transition coincides with antiferromagnetic ordering on the Ir sublattice for all measured samples, and both decrease in onset temperature with Ca content. Weak low-temperature upturns in susceptibility and resistivity for samples with high Ca content suggest that Nd sublattice antiferromagnetism continues to couple to carriers in the metallic regime.arXiv:1908.04874v1 [cond-mat.mtrl-sci]
In this study, we employ bulk electronic properties characterization and x-ray scattering/spectroscopy techniques to map the structural, magnetic and electronic properties of (Eu1-xCax)2Ir2O7 as a function of Ca-doping. As expected, the metal-insulator transition temperature, TMIT, decreases with Ca-doping until a metallic state is realized down to 2 K. In contrast, TAFM becomes decoupled from the MIT and (likely short-range) AFM order persists into the metallic regime. This decoupling is understood as a result of the onset of an electronically phase separated state, the occurrence of which seemingly depends on both synthesis method and rare earth site magnetism. PDF analysis suggests that electronic phase separation occurs without accompanying chemical phase segregation or changes in the short-range crystallographic symmetry while synchrotron x-ray diffraction confirms that there is no change in the long-range crystallographic symmetry. X-ray absorption measurements confirm the Jeff = ½ character of (Eu1-xCax)2Ir2O7. Surprisingly these measurements also indicate a net electron doping, rather than the expected hole doping, indicating a compensatory mechanism. Lastly, XMCD measurements show a weak Ir magnetic polarization that is largely unaffected by Ca-doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.