Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S = 1/2 Mott state of La2CuO4. While bulk superconductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incommensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1−xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.
In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm−3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.
Disentangling the relationship between the insulating state with a charge gap and the magnetic order in an antiferromagnetic (AF) Mott insulator remains difficult due to inherent phase separation as the Mott state is perturbed. Measuring magnetic and electronic properties at the atomic length scales would provide crucial insight, but this is yet to be experimentally achieved. Here we use spectroscopic-imaging spin-polarized scanning tunneling microscopy (SP-STM) to visualize periodic spin-resolved modulations originating from the AF order in a relativistic Mott insulator Sr2IrO4, and study these as a function of doping. We find that near insulator-to-metal transition (IMT), the long-range AF order melts into a fragmented state with short-range AF correlations. Crucially, we discover that the short-range AF order is locally uncorrelated with the observed spectral gap magnitude. This strongly suggests that short range AF correlations are unlikely to be the culprit behind inhomogeneous gap closing and the emergence of pseudogap regions near IMT. Our work establishes SP-STM as a powerful tool for revealing atomic-scale magnetic information in complex oxides.A Mott insulator, characterized by localization of electrons due to strong electron-electron interactions (1), is typically accompanied by magnetic ordering (2-4). The antiferromagnetic (AF)
We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd2Ir2O7 upon hole-doping via substitution of Ca 2+ for Nd 3+ . Ca substitution mediates a fillingcontrolled Mott-like transition with minimal resolvable structural changes and without altering site symmetry. Local structure confirms that Ca substitution does not result in local chemical phase separation, and absorption spectroscopy establishes that Ir cations maintain a spin-orbit entangled electronic configuration. The metal-insulator transition coincides with antiferromagnetic ordering on the Ir sublattice for all measured samples, and both decrease in onset temperature with Ca content. Weak low-temperature upturns in susceptibility and resistivity for samples with high Ca content suggest that Nd sublattice antiferromagnetism continues to couple to carriers in the metallic regime.arXiv:1908.04874v1 [cond-mat.mtrl-sci]
The unconventional electronic ground state of Sr3IrRuO7 is explored via resonant x-ray scattering techniques and angle-resolved photoemission measurements. As the Ru content approaches x = 0.5 in Sr3(Ir1-xRux)2O7, intermediate to the J ef f = 1/2 Mott state in Sr3Ir2O7 and the quantum critical metal in Sr3Ru2O7, a thermodynamically distinct metallic state emerges. The electronic structure of this intermediate phase lacks coherent quasiparticles, and charge transport exhibits a linear temperature dependence over a wide range of temperatures. Spin dynamics associated with the long-range antiferromagnetism of this phase show nearly local, overdamped magnetic excitations and an anomalously large energy scale of 200 meV-an energy far in excess of exchange energies present within either the Sr3Ir2O7 or Sr3Ru2O7 solid-solution endpoints. Overdamped quasiparticle dynamics driven by strong spin-charge coupling are proposed to explain the incoherent spectral features of the strange metal state in Sr3IrRuO7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.