CHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1's role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints. The action of LY2606368 is dependent upon inhibition of CHK1 and the corresponding increase in CDC25A activation of CDK2, which increases the number of replication forks while reducing their stability. Treatment of cells with LY2606368 results in the rapid appearance of TUNEL and pH2AX-positive double-stranded DNA breaks in the S-phase cell population. Loss of the CHK1-dependent DNA damage checkpoints permits cells with damaged DNA to proceed into early mitosis and die. The majority of treated mitotic nuclei consist of extensively fragmented chromosomes. Inhibition of apoptosis by the caspase inhibitor Z-VAD-FMK had no effect on chromosome fragmentation, indicating that LY2606368 causes replication catastrophe. Changes in the ratio of RPA2 to phosphorylated H2AX following LY2606368 treatment further support replication catastrophe as the mechanism of DNA damage. LY2606368 shows similar activity in xenograft tumor models, which results in significant tumor growth inhibition. LY2606368 is a potent representative of a novel class of drugs for the treatment of cancer that acts through replication catastrophe.
(2010) Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase, Cell Cycle, 9:5, 995-1004,
All cancers are characterized by defects in the systems that ensure strict control of the cell cycle in normal tissues. The consequent excess tissue growth can be countered by drugs that halt cell division, and, indeed, the majority of chemotherapeutics developed during the last century work by disrupting processes essential for the cell cycle, particularly DNA synthesis, DNA replication, and chromatid segregation. In certain contexts, the efficacy of these classes of drugs can be impressive, but because they indiscriminately block the cell cycle of all actively dividing cells, their side effects severely constrain the dose and duration with which they can be administered, allowing both normal and malignant cells to escape complete growth arrest. Recent progress in understanding how cancers lose control of the cell cycle, coupled with comprehensive genomic profiling of human tumor biopsies, has shown that many cancers have mutations affecting various regulators and checkpoints that impinge on the core cell-cycle machinery. These defects introduce unique vulnerabilities that can be exploited by a next generation of drugs that promise improved therapeutic windows in patients whose tumors bear particular genomic aberrations, permitting increased dose intensity and efficacy. These developments, coupled with the success of new drugs targeting cell-cycle regulators, have led to a resurgence of interest in cellcycle inhibitors. This review in particular focuses on the newer strategies that may facilitate better therapeutic targeting of drugs that inhibit the various components that safeguard the fidelity of the fundamental processes of DNA replication and repair. Clin Cancer Res; 23(13); 3232-40. Ó2017 AACR.
Arsenic trioxide, an acute promyelocytic leukemia chemotherapeutic, may be an efficacious treatment for other cancers. Understanding the mechanism as well as genetic and molecular characteristics associated with sensitivity to arsenite-induced cell death is key to providing effective chemotherapeutic usage of arsenite. Arsenite sensitivity correlates with deficient p53 pathways in multiple cell lines. The role of p53 in preventing arsenite-induced mitotic arrest-associated apoptosis (MAAA), a form of mitotic catastrophe, was examined in TR9-7 cells, a model cell line with p53 exogenously regulated in a tetracycline-off expression system. Arsenite activated G 1 and G 2 cell cycle checkpoints independently of p53, but mitotic catastrophe occurred preferentially in p53 inhibit cyclin B/CDC2 by CDC2 tyrosine-15 phosphorylation and direct binding, respectively. CDC2-Y15-P was transiently elevated in arsenite-treated p53 (ϩ) cells but persisted in p53 (Ϫ) cells. Arsenite induced p53-S15-P and p21 CIP1/WAF1 only in p53 (ϩ) cells. P21 CIP1/WAF1 -siRNA-treated p53 (ϩ) cells were similar to p53(Ϫ) cells in mitotic index and cell cycle protein levels. p53-inducible proteins GADD45␣ and 14-3-3 are capable of inhibiting cyclin B/CDC2 but did not play a p53-dependent role in mitotic escape in TR9-7 cells. The data indicate that p53 mediates cyclin B/CDC2 inactivation and mitotic release directly via p21 CIP1/WAF1 induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.