Activation of the Ras–MAPK signal transduction pathway is necessary for biological responses both to growth factors and ECM. Here, we provide evidence that phosphorylation of S298 of MAPK kinase 1 (MEK1) by p21-activated kinase (PAK) is a site of convergence for integrin and growth factor signaling. We find that adhesion to fibronectin induces PAK1-dependent phosphorylation of MEK1 on S298 and that this phosphorylation is necessary for efficient activation of MEK1 and subsequent MAPK activation. The rapid and efficient activation of MEK and phosphorylation on S298 induced by cell adhesion to fibronectin is influenced by FAK and Src signaling and is paralleled by localization of phospho-S298 MEK1 and phospho-MAPK staining in peripheral membrane–proximal adhesion structures. We propose that FAK/Src-dependent, PAK1-mediated phosphorylation of MEK1 on S298 is central to the organization and localization of active Raf–MEK1–MAPK signaling complexes, and that formation of such complexes contributes to the adhesion dependence of growth factor signaling to MAPK.
CHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1's role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints. The action of LY2606368 is dependent upon inhibition of CHK1 and the corresponding increase in CDC25A activation of CDK2, which increases the number of replication forks while reducing their stability. Treatment of cells with LY2606368 results in the rapid appearance of TUNEL and pH2AX-positive double-stranded DNA breaks in the S-phase cell population. Loss of the CHK1-dependent DNA damage checkpoints permits cells with damaged DNA to proceed into early mitosis and die. The majority of treated mitotic nuclei consist of extensively fragmented chromosomes. Inhibition of apoptosis by the caspase inhibitor Z-VAD-FMK had no effect on chromosome fragmentation, indicating that LY2606368 causes replication catastrophe. Changes in the ratio of RPA2 to phosphorylated H2AX following LY2606368 treatment further support replication catastrophe as the mechanism of DNA damage. LY2606368 shows similar activity in xenograft tumor models, which results in significant tumor growth inhibition. LY2606368 is a potent representative of a novel class of drugs for the treatment of cancer that acts through replication catastrophe.
Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal for Pak-mediated Raf-1 activation by examining the role of the small GTPase Cdc42, Rac and Ras, and of phosphatidylinositol (PI) 3-kinase. Pak3 acted synergistically with either Cdc42V12 or Rac1V12 to stimulate the activities of Raf-1, Raf-CX, a membrane-localized Raf-1 mutant, and Raf-1 mutants defective in Ras binding. Raf-1 mutants defective in Ras binding were also readily activated by RasV12. This indirect activation of Raf-1 by Ras was blocked by a dominant-negative mutant of Pak, implicating an alternative Ras effector pathway in Pak-mediated Raf-1 activation. Subsequently, we show that Pak-mediated Raf-1 activation is upregulated by both RasV12C40, a selective activator of PI 3-kinase, and p110-CX, a constitutively active PI 3-kinase. In addition, p85Delta, a mutant of the PI 3-kinase regulatory subunit, inhibited the stimulated activity of Raf-1. Pharmacological inhibitors of PI 3-kinase also blocked both activation and Ser338 phosphorylation of Raf-1 induced by epidermal growth factor (EGF). Thus, Raf-1 activation by Ras is achieved through a combination of both physical interaction and indirect mechanisms involving the activation of a second Ras effector, PI 3-kinase, which directs Pak-mediated regulatory phosphorylation of Raf-1.
Interference with DNA damage checkpoints has been demonstrated preclinically to be a highly effective means of increasing the cytotoxicity of a number of DNA-damaging cancer therapies. Cell cycle arrest at these checkpoints protects injured cells from apoptotic cell death until DNA damage can be repaired. In the absence of functioning DNA damage checkpoints, cells with damaged DNA may proceed into premature mitosis followed by cell death. A key protein kinase involved in activating and maintaining the S and G2/M checkpoints is Chk1. Pharmacological inhibition of Chk1 in the absence of p53 functionality leads to abrogation of DNA damage checkpoints and has been shown preclinically to enhance the activity of many standard of care chemotherapeutic agents. LY2603618 is a potent and selective small molecule inhibitor of Chk1 protein kinase activity in vitro (IC(50) = 7 nM) and the first selective Chk1 inhibitor to enter clinical cancer trials. Treatment of cells with LY2603618 produced a cellular phenotype similar to that reported for depletion of Chk1 by RNAi. Inhibition of intracellular Chk1 by LY2603618 results in impaired DNA synthesis, elevated H2A.X phosphorylation indicative of DNA damage and premature entry into mitosis. When HeLa cells were exposed to doxorubicin to induce a G2/M checkpoint arrest, subsequent treatment with LY2603618 released the checkpoint, resulting in cells entering into metaphase with poorly condensed chromosomes. Consistent with abrogation of the Chk1 and p53-dependent G2/M checkpoint, mutant TP53 HT-29 colon cancer cells were more sensitive to gemcitabine when also treated with LY2603618, while wild-type TP53 HCT116 cells were not sensitized by LY2603618 to gemcitabine. Treatment of Calu-6 human mutant TP53 lung cancer cell xenografts with gemcitabine resulted in a stimulation of Chk1 kinase activity that was inhibited by co-administration of LY2603618. By all criteria, LY2603618 is a highly effective inhibitor of multiple aspects of Chk1 biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.