The pathway involving the signalling protein p21Ras propagates a range of extracellular signals from receptors on the cell membrane to the cytoplasm and nucleus. The Ras proteins regulate many effectors, including members of the Raf family of protein kinases. Ras-dependent activation of Raf-1 at the plasma membrane involves phosphorylation events, protein-protein interactions and structural changes. Phosphorylation of serine residues 338 or 339 in the catalytic domain of Raf-1 regulates its activation in response to Ras, Src and epidermal growth factor. Here we show that the p21-activated protein kinase Pak3 phosphorylates Raf-1 on serine 338 in vitro and in vivo. The p21-activated protein kinases are regulated by the Rho-family GTPases Rac and Cdc42. Our results indicate that signal transduction through Raf-1 depends on both Ras and the activation of the Pak pathway. As guanine-nucleotide-exchange activity on Rac can be stimulated by a Ras-dependent phosphatidylinositol-3-OH kinase, a mechanism could exist through which one Ras effector pathway can be influenced by another.
CHK1 is a multifunctional protein kinase integral to both the cellular response to DNA damage and control of the number of active replication forks. CHK1 inhibitors are currently under investigation as chemopotentiating agents due to CHK1's role in establishing DNA damage checkpoints in the cell cycle. Here, we describe the characterization of a novel CHK1 inhibitor, LY2606368, which as a single agent causes double-stranded DNA breakage while simultaneously removing the protection of the DNA damage checkpoints. The action of LY2606368 is dependent upon inhibition of CHK1 and the corresponding increase in CDC25A activation of CDK2, which increases the number of replication forks while reducing their stability. Treatment of cells with LY2606368 results in the rapid appearance of TUNEL and pH2AX-positive double-stranded DNA breaks in the S-phase cell population. Loss of the CHK1-dependent DNA damage checkpoints permits cells with damaged DNA to proceed into early mitosis and die. The majority of treated mitotic nuclei consist of extensively fragmented chromosomes. Inhibition of apoptosis by the caspase inhibitor Z-VAD-FMK had no effect on chromosome fragmentation, indicating that LY2606368 causes replication catastrophe. Changes in the ratio of RPA2 to phosphorylated H2AX following LY2606368 treatment further support replication catastrophe as the mechanism of DNA damage. LY2606368 shows similar activity in xenograft tumor models, which results in significant tumor growth inhibition. LY2606368 is a potent representative of a novel class of drugs for the treatment of cancer that acts through replication catastrophe.
Cyclooxygenase-2 (COX-2) expression is up-regulated in several types of human cancers and has also been directly linked to carcinogenesis. To investigate the role of COX-2 in pancreatic cancer, we evaluated COX-2 protein expression in primary human pancreatic adenocarcinomas (n = 23) and matched normal adjacent tissue (n = 11) by immunoblot analysis. COX-2 expression was found to be significantly elevated in the pancreatic tumor specimens compared with normal pancreatic tissue. To examine whether the elevated levels of COX-2 protein observed in pancreatic tumors correlated with the presence of oncogenic K-ras, we determined the K-ras mutation status in a subset of the tumors and corresponding normal tissues. The presence of oncogenic K-ras did not correlate with the level of COX-2 protein expressed in the pancreatic adenocarcinomas analyzed. These observations were also confirmed in a panel of human pancreatic tumor cell lines. Furthermore, in the pancreatic tumor cell line expressing the highest level of COX-2 (BxPC-3), COX-2 expression was demonstrated to be independent of Erk1/2 activation. The lack of correlation between COX-2 and oncogenic K-ras expression suggests that Ras activation may not be sufficient to induce COX-2 expression in pancreatic tumor cells and that the aberrant activation of signaling pathways other than Ras may be required for up-regulating COX-2 expression. We also report that the COX inhibitors sulindac, indomethacin and NS-398 inhibit cell growth in both COX-2-positive (BxPC-3) and COX-2-negative (PaCa-2) pancreatic tumor cell lines. However, suppression of cell growth by indomethacin and NS-398 was significantly greater in the BxPC-3 cell line compared with the PaCa-2 cell line (P = 0.004 and P < 0.001, respectively). In addition, the three COX inhibitors reduce prostaglandin E(2) levels in the BxPC-3 cell line. Taken together, our data suggest that COX-2 may play an important role in pancreatic tumorigenesis and therefore be a promising chemotherapeutic target for the treatment of pancreatic cancer.
. These data demonstrate that Raf-1 residues 338 to 341 constitute a unique phosphoregulatory site in which the phosphorylation of serine and tyrosine residues contributes to the regulation of Raf by Ras, Src, and Ras-independent membrane localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.