Ammonia (NH3) emissions from animal agriculture can cause eutrophication of water ecosystems and are precursors to secondary particulate matter (PM2.5). NH3 emissions from stored swine manure represent nutrient loss affecting the fertilizing value of manure. The short-term emission bursts occur when farmers agitate manure before emptying storage and fertilizing fields. There is no proven technology to mitigate gaseous emissions during agitation, while the hazards of acute releases (e.g., H2S) are well-known. Biochar mitigates NH3 emissions from manure over the long-term. The objective of this research was to evaluate the mitigation of acute NH3 emissions during/after agitation. Two biochars, highly alkaline and porous (HAP from corn stover) and red oak (RO), were tested. The 6 and 12 mm-thick layers of biochar powder were surficial applied followed by 3 min agitation. NH3 concentrations were measured before/during/after agitation. Mitigation was assessed by comparing: (i) the maximum (peak) flux, (ii) total emission (from agitation start till NH3 concentration returned to the before-agitation), and (iii) the total emissions during agitation. The 12 mm HAP significantly (p < 0.05) reduced (i–iii) by 63, 70, and 85%, respectively. The 6 mm HAP significantly reduced (i–iii) by 76, 75, and 78%, respectively. The 12 mm RO significantly reduced (i–iii) by 9, 53, and 57%, respectively. The 6 mm RO significantly reduced (i–iii) by 61, 86, and 63%, respectively. The NH3 emission kinetics model confirmed that a 6 mm dose was just as effective as the larger dose. More research is needed to optimize and scale-up mitigating emissions and retention of nutrients in manure with biochar.
Rural communities are affected by gaseous emissions from intensive livestock production. Practical mitigation technologies are needed to minimize emissions from stored manure and improve air quality inside barns. In our previous research, the one-time surficial application of biochar to swine manure significantly reduced emissions of NH3 and phenol. We observed that the mitigation effect decreased with time during the 30-day trials. In this research, we hypothesized that bi-weekly reapplication of biochar could improve the mitigation effect on a wider range of odorous compounds using a larger scale and longer trials. The objective was to evaluate the effectiveness of biochar dose and reapplication on mitigation of targeted gases (NH3, odorous, volatile organic compounds VOCs, odor, greenhouse gases (GHG)) from stored swine manure on a pilot-scale setup over 8-weeks. The bi-weekly reapplication of the lower biochar dose (2 kg/m2) showed much higher significant percentage reductions in emissions for NH3 (33% without and 53% with reapplication) and skatole (42% without and 80% with reapplication), respectively. In addition, the reapplication resulted in the emergence of a statistical significance to the mitigation effect for all other targeted VOCs. Specifically, for indole, the percentage reduction improved from 38% (p = 0.47, without reapplication) to 78% (p = 0.018, with reapplication). For phenol, the percentage reduction improved from 28% (p = 0.71, without reapplication) to 89% (p = 0.005, with reapplication). For p-cresol, the percentage reduction improved from 31% (p = 0.86, without reapplication) to 74% (p = 0.028, with reapplication). For 4-ethyl phenol, the percentage emissions reduction improved from 66% (p = 0.44, without reapplication) to 87% (p = 0.007, with reapplication). The one-time 2 kg/m2 and 4 kg/m2 treatments showed similar effectiveness in mitigating all targeted gases, and no statistical difference was found between the dosages. The one-time treatments showed significant percentage reductions of 33% and 42% and 25% and 48% for NH3 and skatole, respectively. The practical significance is that the higher (one-time) biochar dose may not necessarily result in improved performance over the 8-week manure storage, but the bi-weekly reapplication showed significant improvement in mitigating NH3 and odorous VOCs. The lower dosages and the frequency of reapplication on the larger-scale should be explored to optimize biochar treatment and bring it closer to on-farm trials.
Odorous gas emissions from swine production have been a concern for neighbors and communities near livestock farms. Manure storage is one of the main sources of gaseous emissions. Manure additive products are marketed as a simple solution to this environmental challenge. Manure additives are user-friendly for producers and can be applied (e.g., periodically poured into manure) without changing the current manure storage structure. Little scientific data exist on how these products perform in mitigating gaseous emissions from swine manure. The research objective was to evaluate the effectiveness of 12 marketed manure additives on mitigating odor, ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic compounds (VOCs) from stored swine manure. A controlled pilot-scale setup was used to conduct 8-week long trials using manufacturer-prescribed dosages of additives into swine manures. Manure was outsourced from three swine farms to represent a variety of manure storage types and other factors affecting the properties. Measured gaseous emissions were compared between the treated and untreated manure. None of the tested products showed a significant reduction in gaseous emissions when all (n = 3) manures were treated as replicates. Selected products showed a wide range of statistically-significant reduction and generation of gaseous emissions when emissions were compared in pairs of manure types from one farm. The latter observation highlighted the lack of consistent mitigation of gaseous emissions by manure additives. The results of this study do not warrant full-scale trials with the tested products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.