Netrins are secreted proteins that direct cell migration and axon extension in the developing CNS and are essential for normal neural development. In the mature CNS, netrin-1 is expressed by neurons and oligodendrocytes and implicated in the stability of axo-oligodendroglial paranodal junctions. Here we report that the netrin receptor UNC5B is highly expressed by mature oligodendrocytes and enriched at paranodes. We demonstrate that paranodes become disorganized following conditional deletion of UNC5B in oligodendrocytes, with disruption of the interface between glial loops and detachment of glial loops from the axon. Examining axoglial domain segregation, Caspr1 and Kv1.1 disperse along the axon, internodes shorten, and the periodicity of compact myelin is reduced, indicating significant breakdown of myelin organization in UNC5B cKOs. Paranodal disruption and axoglial domain disorganization progressively worsen with age and a delay in motor learning develops specifically in aged animals that lack oligodendroglial UNC5B. We detect reduced amounts of oligodendroglial Claudin-11 and JAM-C proteins in UNC5B knockouts, suggesting that disruption of the specialized autotypic junctions between glial loops may underlie paranodal disorganization. Our findings reveal an essential contribution of oligodendroglial UNC5B at axoglial junctions that is required for the stability of mature myelin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.