The suprachiasmatic nucleus (SCN) contains a master clock for most circadian rhythms in mammals, including daily sleep-wake cycles. The ventrolateral preoptic nucleus (VLPO) plays a key role in sleep generation and, as such, might be an important target of the SCN circadian signal. However, direct SCN projections to the VLPO are limited, suggesting that most of the SCN output to the VLPO might be conveyed indirectly. We examined this possibility by microinjecting selected known major targets of SCN efferents with biotinylated dextran-amine and/or cholera toxin B subunit, followed by analyses of retrograde labelling in the SCN and anterograde labelling in the VLPO. Retrograde labelling results confirmed that the medial preoptic area, subparaventricular zone, dorsomedial hypothalamic nucleus and posterior hypothalamic area all received projections from the SCN; these projections arose predominantly from the shell, as opposed to the core, of the SCN. Anterograde labelling results indicated that these same nuclei also projected to the VLPO, mainly its medial and ventral aspects. Comparison of the results of injections of similar sizes across different target groups indicated that the rostral part of the medial preoptic area and the caudal part of the dorsomedial hypothalamic nucleus were particularly noteworthy for the abundance of both SCN source neurons and efferent fibres and terminals in the VLPO. These results suggest that the SCN might provide indirect input to the VLPO via the medial preoptic area and the dorsomedial hypothalamic nucleus, and that these indirect neuronal pathways might play a major role in circadian control of sleep-wake cycles.
To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase (“3/1” protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the “3/1” CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.
Despite the widespread use of caffeine, the neuronal mechanisms underlying its stimulatory effects are not completely understood. By using c-Fos immunohistochemistry as a marker of neuronal activation, we recently showed that stimulant doses of caffeine activate arousal-promoting hypothalamic orexin (hypocretin) neurons. In the present study, we investigated whether other key neurons of the arousal system are also activated by caffeine, via dual immunostaining for c-Fos and transmitter markers. Rats were administered three doses of caffeine or saline vehicle during the light phase. Caffeine at 10 and 30 mg/kg, i.p., increased motor activities, including locomotion, compared with after saline or a higher dose, 75 mg/kg. The three doses of caffeine induced distinct dose-related patterns of c-Fos immunoreactivity in several arousal-promoting areas, including orexin neurons and adjacent neurons containing neither orexin nor melanin-concentrating hormone; tuberomammillary histaminergic neurons; locus coeruleus noradrenergic neurons; noncholinergic basal forebrain neurons that do not contain parvalbumin; and nondopaminergic neurons in the ventral tegmental area. At any dose used, caffeine induced little or no c-Fos expression in cholinergic neurons of the basal forebrain and mesopontine tegmentum; dopaminergic neurons of the ventral tegmental area, central gray, and substantia nigra pars compacta; and serotonergic neurons in the dorsal raphe nucleus. Saline controls exhibited only few c-Fos-positive cells in most of the cell groups examined. These results indicate that motor-stimulatory doses of caffeine induce a remarkably restricted pattern of c-Fos expression in the arousal-promoting system and suggest that this specific neuronal activation may be involved in the behavioral arousal by caffeine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.