A laboratory soil degradation study was conducted to determine the biodegradation potential of a DvSnf7 dsRNA transcript derived from a Monsanto genetically modified (GM) maize product that confers resistance to corn rootworm (CRW; Diabrotica spp.). This study provides new information to improve the environmental assessment of dsRNAs that become pesticidal through an RNAi process. Three agricultural soils differing in their physicochemical characteristics were obtained from the U.S., Illinois (IL; silt loam), Missouri (MO; loamy sand) and North Dakota (ND; clay loam), and exposed to the target dsRNA by incorporating insect-protected maize biomass and purified (in vitro-transcribed) DvSnf7 RNA into soil. The GM and control (non-GM maize) materials were added to each soil and incubated at ca. 22°C for 48 hours (h). Samples were collected at 12 time intervals during the incubation period, extracted, and analyzed using QuantiGene molecular analysis and insect bioassay methods. The DT50 (half-life) values for DvSnf7 RNA in IL, MO, and ND soils were 19, 28, and 15 h based on QuantiGene, and 18, 29, and 14 h based on insect bioassay, respectively. Furthermore, the DT90 (time to 90% degradation) values for DvSnf7 RNA in all three soils were <35 h. These results indicate that DvSnf7 RNA was degraded and biological activity was undetectable within approximately 2 days after application to soil, regardless of texture, pH, clay content and other soil differences. Furthermore, soil-incorporated DvSnf7 RNA was non-detectable in soil after 48 h, as measured by QuantiGene, at levels ranging more than two orders of magnitude (0.3, 1.5, 7.5 and 37.5 µg RNA/g soil). Results from this study indicate that the DvSnf7 dsRNA is unlikely to persist or accumulate in the environment. Furthermore, the rapid degradation of DvSnf7 dsRNA provides a basis to define relevant exposure scenarios for future RNA-based agricultural products.
Determining the rate of biodegradation of double-stranded RNA (dsRNA) in the environment is an essential element of a comprehensive risk assessment of an RNA-based agricultural product. This information is used during problem formulation to define relevant routes and durations of environmental exposure for in planta-expressed dsRNA. Although exposure to biotechnology-derived crops expressing dsRNA traits in the aquatic environment is predicted to be minimal, little is known regarding the fate of dsRNA in these environments. To assess exposure to aquatic environments, a study was conducted to measure the rate of biodegradation of DvSnf7 dsRNA in aerobic water-sediment systems. Aquatic systems containing natural water and sediments that varied in physical and chemical characteristics were treated with dsRNA by applying DvSnf7 dsRNA directly to the water column. In the present study, DvSnf7 dsRNA dissipated rapidly from the water phase and was undetectable within 7 d as measured by QuantiGene (Affymetrix) and a sensitive insect bioassay in these diverse systems. Degradation kinetics estimated a half-life (time to 50% dissipation [DT50]) of less than 3 d and a time to 90% dissipation of approximately 4 d. Further analysis indicated that DvSnf7 dsRNA had DT50 values of less than 6 d in both sediment-free systems containing natural water and systems with only sediment. Taken together, the results of the present study indicate that dsRNA-based agricultural products rapidly degrade and consequently are unlikely to persist in aquatic environments. Environ Toxicol Chem 2017;36:727-734. © 2016 SETAC.
Hall, S.; Nev6, R. A.; Reichardt, P. B.; Swisher, G. A., Jr. In "Toxic Dinoflagellate Blooms"; Taylor, D. L.; Seliger, H. H., Eds.; Elsevier/North-Holland: New York, 1979; p 345. Ikawa, M.; Wegener, K.; Foxall, T. L.; Sasner, J. J., Jr.; Carter, P. W.; Shoptaugh, N. H. In "The Water Environment: Algal Toxins and Health"; Carmichael, W. W., Ed.; Plenum Press: New York, 1981; p 415. Koyama, K.; Noguchi, T.; Ueda, Y.; Hashinoto, K. Nippon Suisan Gakkaishi 1981,47, 965. Noguchi, T.; Kono, M.; Ueda, Y.; Hashimoto, K. Nippon Kagaku Kaishi 1981a, 652. Noguchi, T.; Ueda, Y.; Hashimoto, K.; Seto, H. Nippon Suisan Gakkaishi 1981b, in press. Schantz, E. J.; Mold, J. D.; Stanger, D. W.; Shavel, J.; Riel, F. J.; Bowden, J. P.; Lynch, J. M.; Wyler, R. S.; Riegel, B.; Sommer, H. J. Am. Chem. SOC. 1957, 79,5230. Shimizu, Y.; Alam, M.; Oshima, Y.; Fallon, W. E. Biochen. Biophys. Res. Commun. 1975, 66, 731. Shimizu, Y.; Buckley, L. J.; Alam, M.; Oshima, Y.; Fallon, W. E.; Kasai, H.; Miura, I.; Gullo, V. P.; Nakanishi, K. J. Am. Chem. SOC. 1976, 98, 5414. Shimizu, Y.; Yoshioka, M. Science (Washington, D.C.) 1981,212, 547. Ueda, Y.; Noguchi, T.; Koyama, K.; Kono, M.; Onoue, Y. Nippon Suisan Gakkaishi 1981, in press. Yasumoto, T.; Oshima, Y.; Konta, T. Nippon Suisan Gakkaishi 1981, 47, 957.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.