The incorporation of a sulfate removal system onto a stimulation vessel has been shown to positively affect vessel utilization, increase efficiency in field development, and reduce freshwater consumption. Stimulation vessels have fixed storage and transportation volumes as well as a fixed total mass that can be loaded. Fresh water occupies the highest proportion of space and mass in most stimulation treatments, which imposes limitations on all other products that can be loaded out. Particularly for acid stimulation treatments, a compromise between the volumes of raw acid and fresh water must be made in order to achieve the best operational efficiency possible. Any method that can reduce, eliminate, or replace fresh water as a component in stimulation fluids will have a significant impact on vessel efficiency. One option is the use of seawater as the base fluid. However, seawater can cause problems for well production due to the high sulfate content in the water leading to the formation of mineral scale. The solution to this problem has been the installation of a sulfate removal system on the stimulation vessel. Driven by membrane nanofiltration, this system can produce up to 100 m3/hr of low sulfate water from seawater for well stimulation operations. By removing the scaling risk from seawater, this system enables the stimulation vessel to maximize the products it loads with the ability to produce low sulfate water as and when it is needed. The sulfate removal system can reduce SO4 content to 4.3 mg/l and reduce other ions present in seawater. With an output of 100 m3/hr and being installed independently from stimulation systems, the unit is able to produce water regardless of ongoing activities. In stimulation jobs, multistage ball drop operations are the most time-critical operations. In the analysis of hundreds of stages stimulated with water from the new nanofiltration system, the average stage completion time was 6 hours, which included ball loading, dropping, and displacement; diagnostic injection testing; and the main treatment. With an average water requirement of 600 m3, the vessel can keep up with water demand and remove water capacity from the utilization equation. The use of a compact nanofiltration system for SO4 removal has improved stimulation vessel operations where scale production is a key concern for operators. In addition to increasing vessel utilization and intervention efficiency, the system will lead to the elimination of approximately 68,000 m3 of fresh water being pumped every year for stimulation operations in the North Sea.
This paper describes the utilization of a riserless light well intervention (RLWI) vessel with well control system and flexible downlines to execute a re-stimulation campaign on subsea injection wells located in the Norwegian Continental shelf in the summer of 2019 and 2020. A riserless light well intervention (RLWI) vessel with well control system and flexible downlines was used in combination with a stimulation vessel. The objective of each campaign was to increase injectivity in the wells with high-rate acid treatments. The lessons learned from the 2019 campaign were applied to the 2020 campaign, resulting in reduced health and safety exposure, and improved operational efficiency. Analysis of the treatments and their impact on injection and field pressure support was conducted to assess the effects of these improvements and provide insights for how the treatments can be applied to vessel stimulation in general. In each campaign, the RLWI vessel was connected to the subsea asset, and a dedicated stimulation vessel provided stimulation fluids via a high-pressure flexible hose connected between the two vessels. Both campaigns saw high treatment pump rates of up to 60 bbl/min with low-pH crosslinked gel fluids, 28% hydrochloric acid, and diverters in the form of ball sealers and rock salt. Hose deployment methodologies between the two vessels differed in the two campaigns. The 2019 campaign employed a conventional transfer utilizing the marine crane on the RLWI vessel to lift and lower the hose into a preexisting hanger. Learnings from this operation led to the development and use of a winch pull-in method in which the hose connection was accomplished with a hot stab connector on the RLWI vessel, eliminating human intervention and the use of the crane. The 2019 and 2020 campaigns successfully stimulated five and six subsea injection wells, respectively, and realized post-stimulation improvement in injection rates of 135%. One year of field monitoring from the first campaign shows pressure support benefits with improvements in production throughout the connecting area of the field. The winch pull-in method of hose deployment between the vessels achieved time improvements of 8 hours per stimulation treatment. In addition, the added flexibility of not needing to be within crane reach gave the operation extended working weather limits. The overall result was a significant improvement in operating efficiency between the 2019 and 2020 campaigns. The operations showed how high-rate stimulation can be achieved on subsea assets with the use of an RLWI and stimulation vessels. Detailed analysis of the operational efficiency of each campaign was performed, and the improvements from one campaign to the next documented. The winch pull-in method is a new way of high-pressure hose transfer that can be applied to future stimulation vessel operations to improve operational safety and efficiency.
This paper describes the evolution of subsea stimulation treatments within one field including a novel dual vessel approach that was developed and successfully implemented on multiple wells. The methodology that enabled stimulations of high volume, complexity and precision is described, including observed results and opportunities for continuous improvement. In a harsh low oil price environment such cost-efficient stimulations can unlock additional potential for many subsea developments. Three West of Shetlands (WoS) injectors stimulation campaigns successfully delivered 11 subsea well treatments with a novel dual vessel batch approach in 2020 delivering operations of outstanding efficiency and reservoir results while driving costs down. A construction vessel provided remotely operated vehicle (ROV) support including deploying the well control package, whereas the stimulation vessel ran its own downline to facilitate optimized use of its dedicated pumping system and large chemical handling capacity. To enable deep water stimulation, the quick connect downline was engineered and project specific equipment installed onto the stimulation vessel allowing deployment to 450m water depth. Notable cost reductions in excess of 34% were achieved utilizing the efficiency offered by manifold entry for batch treatments to minimise the number of subsea re-connection operations while the stimulation vessel allowed much larger bulk loadouts and optimised the number of vessel loadings for continuous operations. This novel dual vessel approach for batch subsea stimulations allowed multiple well access through ‘daisy chains’ within isolated pipeline segments, while keeping injection operations live to other wells from the Glen Lyon Floating Production Storage and Offloading Vessel (FPSO) in the Schiehallion field. Improved HSE performance was achieved through reduced chemical handling and transportation. Real time data solutions for onshore monitoring were developed which aided the management of COVID-19 risks. The post-stimulation injection rate from the stimulation has signifcantly improved in all wells, resulting in large additional injection capacity for the field. Maintaining increased injection capacity has proved to be a challenge. The acquired understanding regarding water quality and longevity of treatments will allow identification of further continuous improvement opportunities to enable sustainable stimulation results.
Near-wellbore diversion during acid fracturing or matrix acidizing is widely used to improve reservoir coverage and to save time spent on zonal isolation. It is particularly useful in offshore operations where efficiency is crucial. Diversion is typically achieved by dynamic placement of degradable solid particulates into perforations, wormholes, and/or fractures to divert the treatment fluid to understimulated zones. The diverting material must maintain integrity and mechanical strength during the operation before degrading at the downhole temperature in the presence of stimulation fluids. Whereas currently used materials work very well in a wide temperature range, at temperatures below 140°F (60°C), finding an appropriate diverting material that balances the trade-offs between surface shelf-life, stability during treatment, and fast downhole degradation is a challenge. This paper presents a novel low-temperature diverter that pushes the degradable diverter temperature limit down to 70°F (21°C). The new material was deployed in a matrix acidizing job performed on an injector well in the North Sea. Field deployment was preceded by an extensive laboratory testing program to verify diversion efficiency and acceptable degradation. The novel diverter was deployed in a restimulation treatment of a 10-year-old injection well where BHT was reduced to 70°F (21°C) due to long term injection of cold water. An acidizing treatment was designed to incorporate 4 diversion pills of the novel diversion material. All diversion pills were placed without extra operational time or operational issues. All four pills showed an instant pressure response of more than 250 psi as well as a sustained pressure increase of more than 100 psi, providing an indication of effective fluid diversion. The well was switched to injection mode less than 36 hours after the end of treatment without any flowback, providing a tremendous gain in operational efficiency. The post-treatment injection rate increased by 150% for several days, demonstrating significant and fast diverter degradation, despite the low temperature. The injection rate later stabilized at more than twice the pretreatment injectivity. The results demonstrate the viability of the novel low-temperature diverter in wells with BHT of 70 to 140°F (21 – 60 °C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.