An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s−1, standard deviation of 18 mm s−1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.
Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water‐groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the riverbed in a 7 km long reach of the highly regulated Columbia River. A high‐resolution computational fluid dynamics (CFD) modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the riverbed. We found that about 85% of the time from 2008 to 2014 the river was losing water with an annual average net HEF rates across the riverbed (Qz) of −2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at subdaily time scale by generating high‐frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.
An experiment apparatus has been previously developed with the ability to independently control the instantaneous flow velocity in a water flume. This configuration, which uses two pitching hydrofoils to generate the flow fluctuations, allows the unsteady response of submerged structures to be studied over a wide range of driving frequencies and conditions. Linear unsteady lift theory has been used to calculate the instantaneous circulation about two pitching hydrofoils in uniform flow. A vortex model is then used to describe the circulation in the wakes that determine the velocity perturbations at the centreline between the foils. This paper introduces how the vortex model can be discretized to allow the inverse problem to be solved, such that the foil motions required to recreate a desired velocity time series can be determined. The results of this model are presented for the simplified cases of oscillatory velocity fluctuations in the vertical and stream-wise directions separately, and also simultaneously. The more general case of two-dimensional aperiodic velocity fluctuations is also presented, which demonstrates the capability of configuration between the suggested frequency limits of $0. 06\leq k\leq 1. 9$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.