Understanding the factors that injure or kill turbine-passed fish is important to the operation and design of the turbines. Motion-tracking analysis was performed on high-speed, high-resolution digital videos of juvenile salmonids exposed to a laboratory-generated shear environment to isolate injury mechanisms. Hatchery-reared fall chinook salmon (Oncorhynchus tshawytscha, 93128 mm in length) were introduced into a submerged, 6.35-cm-diameter water jet at velocities ranging from 12.2 to 19.8 m·s1, with a reference control group released at 3 m·s1. Injuries typical of turbine-passed fish were observed and recorded. Three-dimensional trajectories were generated for four locations on each fish released. Time series of velocity, acceleration, force, jerk, and bending angle were computed from the three-dimensional trajectories. The onset of minor, major, and fatal injuries occurred at nozzle velocities of 12.2, 13.7, and 16.8 m·s1, respectively. Opercle injuries occurred at 12.2 m·s1 nozzle velocity, while eye injuries, bruising, and loss of equilibrium were common at velocities of 16.8 m·s1 and above. Of the computed dynamic parameters, acceleration showed the strongest predictive power for eye and opercle injuries and overall injury level, and it may provide the best potential link between laboratory studies of fish injury, field studies designed to collect similar data in situ, and numerical modeling.
Juvenile rainbow trout Oncorhynchus mykiss and steelhead (anadromous rainbow trout), fall (age‐0 and age‐1) and spring Chinook salmon O. tshawytscha, and American shad Alosa sapidissima were exposed to shear environments in the laboratory to establish injury–mortality thresholds based on estimates of strain rate. Fish were exposed to a submerged jet having exit velocities of 0 to 21.3 m/s, providing estimated exposure strain rates up to 1,185/s. Turbulence intensity in the area of the jet where fish were subjected to shear was minimal, varying from 3% to 6% of the estimated exposure strain rate. Injuries and mortalities increased for all species of fish at strain rates greater than 495/s. American shad were the most susceptible to injury after being subjected headfirst to a shear environment, while steelhead and rainbow trout were the most resistant. There was no apparent size‐related trend in susceptibility to high shear except that age‐0 fall Chinook salmon were more resistant to shear environments than age‐1 fall Chinook salmon. All groups of test fish exposed headfirst to high‐shear environments had higher injury–mortality rates than fish introduced tailfirst at similar strain rates. These results document the relationship between fish injury and a fluid force present at hydroelectric facilities and provide biological specifications for improving fish passage and survival.
Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, laboratory experiments that measure continuum properties are typically performed on decimeterscale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeterscale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a multiscale Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Flow and transport simulations based on the binary segmentation were inconsistent with experimental observations because of overestimation of large connected pores. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.