Tissue-conserving surgery is used increasingly in cancer treatment. However, one of the main challenges in this type of surgery is the detection of tumor margins. Histopathology based on tissue sectioning and staining has been the gold standard for cancer diagnosis for more than a century. However, its use during tissue-conserving surgery is limited by time-consuming tissue preparation steps (1-2 h) and the diagnostic variability inherent in subjective image interpretation. Here, we demonstrate an integrated optical technique based on tissue autofluorescence imaging (high sensitivity and high speed but low specificity) and Raman scattering (high sensitivity and high specificity but low speed) that can overcome these limitations. Automated segmentation of autofluorescence images was used to select and prioritize the sampling points for Raman spectroscopy, which then was used to establish the diagnosis based on a spectral classification model (100% sensitivity, 92% specificity per spectrum). This automated sampling strategy allowed objective diagnosis of basal cell carcinoma in skin tissue samples excised during Mohs micrographic surgery faster than frozen section histopathology, and one or two orders of magnitude faster than previous techniques based on infrared or Raman microscopy. We also show that this technique can diagnose the presence or absence of tumors in unsectioned tissue layers, thus eliminating the need for tissue sectioning. This study demonstrates the potential of this technique to provide a rapid and objective intraoperative method to spare healthy tissue and reduce unnecessary surgery by determining whether tumor cells have been removed.
Objectives To assess the effects of treatments for non-metastatic invasive squamous cell carcinoma (SCC) of the skin using evidence from observational studies, given the paucity of evidence from randomised controlled trials.Design Systematic review of observational studies. Medline, Embase, to December 2012. Review methods Observational studies of interventions for primary, non-metastatic, invasive, SCC of the skin that reported recurrence during follow-up, quality of life, initial response to treatment, adverse events, cosmetic appearance, or death from disease. Studies were excluded if data for primary cutaneous SCC was not separable from other data. Data were extracted independently by two reviewers. Meta-analysis was performed where appropriate using a random effects model to estimate the pooled proportion of an event with 95% confidence intervals.
Data sourcesResults 118 publications were included, covering seven treatment modalities. Pooled estimates of recurrence of SCCs were lowest after cryotherapy (0.8% (95% confidence interval 0.1% to 2%)) and curettage and electrodesiccation (1.7% (0.5% to 3.4%)), but most treated SCCs were small, low risk lesions. After Mohs micrographic surgery, the pooled estimate of local recurrence during variable follow-up periods from 10 studies was 3.0% (2.2% to 3.9%), which was non-significantly lower than the pooled average local recurrence of 5.4% (2.5% to 9.1%) after standard surgical excision (12 studies), and 6.4% (3.0% to 11.0%) after external radiotherapy (7 studies). After an apparently successful initial response of SCCs to photodynamic therapy, pooled average recurrence of 26.4% (12.3% to 43.7%; 8 studies) was significantly higher than other treatments. Evidence was limited for laser treatment (1 study) and for topical and systemic treatments (mostly single case reports or small non-comparative series with limited follow-up).Conclusions Many observational studies have looked at different treatment modalities for SCC, but the evidence base for the effectiveness of these interventions is poor. Comparison of outcomes after different treatments should be interpreted cautiously owing to biases inherent in the types of study included, and lack of direct comparisons to enable the estimation of relative treatment effect. Further evidence is needed to develop a prognostic model and stratify individuals at high risk of developing SCC, to improve the evidence base for this common cancer and to optimise clinical management.Protocol registration International Prospective Register of Systematic Reviews (PROSPERO) registration number CRD42011001450.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.