α(R)-InSe has been experimentally and theoretically studied under compression at room temperature by means of X-ray diffraction and Raman scattering measurements as well as by ab initio total-energy and lattice-dynamics calculations. Our study has confirmed the α ( R3 m) → β' ( C2/ m) → β ( R3̅ m) sequence of pressure-induced phase transitions and has allowed us to understand the mechanism of the monoclinic C2/ m to rhombohedral R3̅ m phase transition. The monoclinic C2/ m phase enhances its symmetry gradually until a complete transformation to the rhombohedral R3̅ m structure is attained above 10-12 GPa. The second-order character of this transition is the reason for the discordance in previous measurements. The comparison of Raman measurements and lattice-dynamics calculations has allowed us to tentatively assign most of the Raman-active modes of the three phases. The comparison of experimental results and simulations has helped to distinguish between the different phases of InSe and resolve current controversies.
Two anomalous broad bands are usually found in the Raman spectrum of bulk and 2D Te-based chalcogenides, which include binary compounds, like ZnTe, CdTe, HgTe, GaTe, GeTe, SnTe, PbTe, GeTe2,...
An ab initio study of β-As 2 Te 3 (R 3m symmetry) at hydrostatic pressures shows that this compound is a trivial small band-gap semiconductor at room pressure that undergoes a quantum topological phase transition to a 3D topological Dirac semimetal around 2 GPa. At higher pressures, the band gap reopens and again decreases above 4 GPa. Our calculations predict an insulator-metal transition above 6 GPa due to the closing of the band gap, with strong topological features persisting between 2 and 10 GPa with Z 4 = 3 topological index. By investigating the lattice thermal conductivity (κ L ), we observe that close to room conditions κ L is very low, either for the in-plane and the out-of-plane axis, with 0.098 and 0.023 Wm −1 K −1 , respectively. This effect occurs due to the presence of two low-frequency optical modes, namely E u and E g , which increase the phonon-phonon scattering rate. Therefore, our results suggest that ultralow lattice thermal conductivities, which enable highly efficient thermoelectric materials, can be engineered in systems that are close to a structural instability derived from phonon Kohn anomalies. At higher pressures, the values of the in-and out-of-plane thermal conductivities not only increase in magnitude, but also approximate in value as the layered character of the compound decreases.
We report a joint experimental and theoretical study of the low-pressure phase of α′-Ga2S3 under compression. The structural, vibrational, topological and electronic properties have been evaluated to reveal the relevance of the vacancy channels and the single and double lone electron pairs in the pressure behaviour of this system.
The effects of pressure on the crystal structure of aurophilic tetragonal gold iodide have been studied by means of powder X-ray diffraction up to 13.5 GPa. We found evidence of the onset of a phase transition at 1.5 GPa that is more significant from 3.8 GPa. The low-and high-pressure phases coexist up to 10.7 GPa. Beyond 10.7 GPa, an irreversible process of amorphization takes place. We determined the axial and bulk compressibility of the ambient-pressure tetragonal phase of gold iodide up to 3.3 GPa. This is extremely compressible with a bulk modulus of 18.1(8) GPa, being as soft as a rare gas, molecular solids, or organometallic compounds. Moreover, its response to pressure is anisotropic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.