Scientists and tribologists are currently exploring sustainable and inexhaustible lubricants as a result of increased awareness of environmental and health-related issues. Vegetable oils are being investigated as a potential form of environmentally friendly cutting fluids due to their excellent renewability, biodegradability, and lubricating performance. This report provides an overview of different vegetable oils used as cutting fluids in the machining of engineering materials. The effects of virgin vegetable oils, emulsified vegetable-based oils, and vegetable-oil-based nano-cutting fluids on the cutting force, the surface finish of machined parts, the tool wear, and the temperature of the cutting area were surveyed critically. Compared to mineral-oil-based cutting fluids, studies have demonstrated that vegetable-oil-based cutting fluids meet cleaner manufacturing standards with good or better efficiency.
Quenching is one of the major processes of heat treatment of medium carbon steel that aims at improving its mechanical properties. However, the effectiveness of this process is dependent on several control factors that must be maximized to obtain optimum results in terms of hardness, yield strength, ultimate tensile strength among others. This study aims at optimizing the process of improving the mechanical properties of medium carbon steel by varying some key factors like the quenchant used (A), heat treatment temperature (B), and soaking time (C). The measured responses in this study were the hardness, yield strength (YS), and ultimate tensile strength (UTS). Optimization was conducted in two stages. The first stage dealt with the mono-optimization of process parameters using Taguchi's Signal-to-Noise (S/N) ratio. A total of nine (9) experiments were performed based on standard L9 orthogonal array because each of the three control factors has three (3) levels. The second stage was multi-objective optimization using Taguchi-based grey relational analysis (GRA). The optimal conditions for hardness, YS, and UTS were obtained at A
2
B
3
C
3
, A
3
B
2
C
3
, and A
3
B
3
C
3
, respectively. Using ANOVA as statistical analysis, it was observed that the soaking time was the main control factor for all three measured responses (31.95% contribution ratio for hardness, 62.46%, and 66.76% for YS and UTS, respectively), while the quenchant had the least contribution. Analysis of the Taguchi-based GRA revealed that the results obtained are in total conformance to that of the Taguchi method, with soaking time having the highest contribution ratio of 69.41%.
Abstract:In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Groundnut shells gasified in a throatless downdraft gasifier could be used to produce a clean gas with a calorific value of 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6%) and ash content (3.19%) are the main advantages of groundnut shells for gasification. Gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.
Convectional refrigeration is one of the causes of global warming as carbon dioxide is emitted from its refrigerant to the environment. Semiconductor-based refrigeration is one of the alternative technologies that can lower the carbon dioxide emissions to the atmosphere as it uses electron gas instead of a refrigerant as its working fluid. The present work aims to design and construct a semiconductor-based refrigerator and test its performance. The refrigerator was designed to cool 4×10 -3 m -3 of water from a temperature of 30℃ to 0℃. The tests performed on the refrigerator were retention time of the temperature of the water, change in the water temperature at different intervals of time, and the cooling rate of the water. The results of the tests indicated that the temperature of the water dropped from its initial value of 30℃ to 0℃ after 225 minutes, and maintained the temperature of 0℃ for 15 minutes. After the refrigerator was switched off, the temperature of 0℃ was retained for approximately 30 minutes, and then took 192 minutes to rise from 0℃ to its initial value of 30℃. The average cooling rate for the duration of 225 minutes was 0.133℃/min. The current work widens the studies on the use of alternative technologies for convectional refrigeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.