Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1–1.7 currents, with an IC50 of 1.9–3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.
Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic NaVs could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (Kd) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic NaVs, displayed a Kd of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic NaVs also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate NaV homologues.
Activation of small conductance calcium-activated potassium (K Ca 2) channels can regulate neuronal firing and synaptic plasticity. They are characterized by their high sensitivity to the bee venom toxin apamin, but the mechanism of block is not understood. For example, apamin binds to both K Ca 2.2 and K Ca 2.3 with the same high affinity (K D ϳ 5 pM for both subtypes) but requires significantly higher concentrations to block functional current (IC 50 values of ϳ100 pM and ϳ5 nM, respectively). This suggests that steps beyond binding are needed for channel block to occur. We have combined patch clamp and binding experiments on cell lines with molecular modeling and mutagenesis to gain more insight into the mechanism of action of the toxin. An outer pore histidine residue common to both subtypes was found to be critical for both binding and block by the toxin but not for block by tetraethylammonium (TEA) ions. These data indicated that apamin blocks K Ca 2 channels by binding to a site distinct from that used by TEA, supported by a finding that the onset of block by apamin was not affected by the presence of TEA. Structural modeling of ligand-channel interaction indicated that TEA binds deep within the channel pore, which contrasted with apamin being modeled to interact with the channel outer pore by utilizing the outer pore histidine residue. This multidisciplinary approach suggested that apamin does not behave as a classical pore blocker but blocks using an allosteric mechanism that is consistent with observed differences between binding affinity and potency of block.K Ca 2 channels (formerly known as SK channels) are characterized by their sensitivity to the highly specific toxin apamin (1). This 18-amino acid peptide, which has been isolated from the honeybee (Apis mellifera) venom (2), contains two disulfide bridges that provide a fairly rigid tertiary conformation (3), with two arginine residues (Arg-13 and Arg-14) being critical for its biological activity (4). The cloning of K Ca 2 channel subunits has revealed the existence of three subtypes (K Ca 2.1-K Ca 2.3, formerly SK1-SK3) (5) that bind apamin with very high affinity (K D ϳ 5-10 pM) (see Ref. 6 for a review). However, apamin is less potent at blocking K Ca 2 current and displays differential block of channel subtypes. For example, K Ca 2.2 (all species) displays the highest sensitivity, with IC 50 values from 27 to 140 pM. Rat, human, and mouse K Ca 2.3-mediated currents show an intermediate sensitivity, with IC 50 values ranging from 0.63 to 19 nM. Finally, human K Ca 2.1 is the least sensitive, with reported IC 50 values ranging between 0.7 and 100 nM (6). These differences between binding and electrophysiological results suggest that the mechanism of block by apamin is complex and that binding and block by the toxin are not identical phenomena.K Ca 2 channel subtypes are expressed throughout the CNS and periphery, displaying partially overlapping but distinct locations. This has led to the proposal that block of K Ca 2 channels may be a novel t...
Selective block of Na1.7 promises to produce non-narcotic analgesic activity without motor or cognitive impairment. Several Na1.7-selective blockers have been reported, but efficacy in animal pain models required high multiples of the IC for channel block. Here, we report a target engagement assay using transgenic mice that has enabled the development of a second generation of selective Nav1.7 inhibitors that show robust analgesic activity in inflammatory and neuropathic pain models at low multiples of the IC. Like earlier arylsulfonamides, these newer acylsulfonamides target a binding site on the surface of voltage sensor domain 4 to achieve high selectivity among sodium channel isoforms and steeply state-dependent block. The improved efficacy correlates with very slow dissociation from the target channel. Chronic dosing increases compound potency about 10-fold, possibly due to reversal of sensitization arising during chronic injury, and provides efficacy that persists long after the compound has cleared from plasma.
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD’s localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.