Selective block of Na1.7 promises to produce non-narcotic analgesic activity without motor or cognitive impairment. Several Na1.7-selective blockers have been reported, but efficacy in animal pain models required high multiples of the IC for channel block. Here, we report a target engagement assay using transgenic mice that has enabled the development of a second generation of selective Nav1.7 inhibitors that show robust analgesic activity in inflammatory and neuropathic pain models at low multiples of the IC. Like earlier arylsulfonamides, these newer acylsulfonamides target a binding site on the surface of voltage sensor domain 4 to achieve high selectivity among sodium channel isoforms and steeply state-dependent block. The improved efficacy correlates with very slow dissociation from the target channel. Chronic dosing increases compound potency about 10-fold, possibly due to reversal of sensitization arising during chronic injury, and provides efficacy that persists long after the compound has cleared from plasma.
ABSTRACT:We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNa V 1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNa V 1.7 while minimizing off-target safety concerns and generated compound 3. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of Na V 1.7 leads to an analgesic effect in vivo. Our findings corroborate the importance of hNa V 1.7 as a drug target for the treatment of pain. KEYWORDS: Sodium channel, Na V 1.7, Na V 1.5, pain, aryl sulfonamide, formalin model, cold allodynia T he sodium channel Na V 1.7 belongs to a family of transmembrane voltage gated sodium channels, which consists of nine isoforms in mammals (Na V 1.1 to Na V 1.9).1−4 Na V 1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Na V 1.7 and its encoding SCN9A gene to painful disorders in humans. Gain-of-function mutations in the SCN9A gene result in painful conditions such as inherited erythromelalgia, paroxysmal extreme pain disorder, and idiopathic small fiber neuropathies. In contrast, loss-of-function mutations in the SCN9A gene were found to be the genetic cause of a rare disorder called congenital insensitivity to pain, characterized by a complete loss of the ability to sense painful stimuli. It is noteworthy that no significant side effects have been reported in people lacking Na V 1.7, such as cognitive, motor, or non-nociceptive sensory impairments other than anosmia, giving further support to the concept of Na V 1.7 antagonists as analgesics.1−4 The predominant expression of the Na V 1.7 isoform in the PNS may offer a pathway to limit CNS-related adverse effects by developing compounds that do not cross the blood−brain barrier. Combined, these observations and findings have made Na V 1.7 a promising target for drug development for the treatment of pain. Indeed, there has been tremendous interest in the development of small molecule Na V 1.7 inhibitors as analgesics, particularly isoform-selective inhibitors, and coverage of the progress has been the subject of several excellent reviews. 1−7 In recent years, a series of aryl sulfonamides as Na V inhibitors have been reported that appear to be highly selective for Na V 1.7 over the cardiac ion channel Na V 1.5. [4][5][6]8 Since block of the Na V 1.5 channel may lead to arrhythmia and thus limit the therapeutic potential of nonselective Na V 1.7 inhibitors, isoform-selective inhibitors have attracted considerable interest due to their potential to avoid these adverse events.3,5 An example is aryl sulfonamide PF-04856264 ( Figure 1), which selectively blocks Na V 1.7 over Na V 1.5 and Na V 1.3.
KM. Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction. Am J Physiol Heart Circ Physiol 309: H70 -H81, 2015. First published April 24, 2015 doi:10.1152/ajpheart.00664.2014.-Obesity is associated with cardiac insulin resistance and contractile dysfunction, which contribute to the development of heart failure. The RhoA-Rho kinase (ROCK) pathway has been reported to modulate insulin resistance, but whether it is implicated in obesity-induced cardiac dysfunction is not known. To test this, wild-type (WT) and ROCK2 ϩ/Ϫ mice were fed normal chow or a high-fat diet (HFD) for 17 wk. Whole body insulin resistance, determined by an insulin tolerance test, was observed in HFD-WT, but not HFD-ROCK2 ϩ/Ϫ , mice. The echocardiographically determined myocardial performance index, a measure of global systolic and diastolic function, was significantly increased in HFD-WT mice, indicating a deterioration of cardiac function. However, no change in myocardial performance index was found in hearts from HFD-ROCK2 ϩ/Ϫ mice. Speckle-tracking-based strain echocardiography also revealed regional impairment in left ventricular wall motion in hearts from HFD-WT, but not HFD-ROCK2 ϩ/Ϫ , mice. Activity of ROCK1 and ROCK2 was significantly increased in hearts from HFD-WT mice, and GLUT4 expression was significantly reduced. Insulin-induced phosphorylation of insulin receptor substrate (IRS) Tyr 612 , Akt, and AS160 was also impaired in these hearts, while Ser 307 phosphorylation of IRS was increased. In contrast, the increase in ROCK2, but not ROCK1, activity was prevented in hearts from HFD-ROCK2 ϩ/Ϫ mice, and cardiac levels of TNF␣ were reduced. This was associated with normalization of IRS phosphorylation, downstream insulin signaling, and GLUT4 expression. These data suggest that increased activation of ROCK2 contributes to obesityinduced cardiac dysfunction and insulin resistance and that inhibition of ROCK2 may constitute a novel approach to treat this condition. ROCK2; insulin signaling; heart; insulin receptor substrate phosphorylation
Herein, we report the discovery and optimization of a series of orally bioavailable acyl sulfonamide NaV1.7 inhibitors that are selective for NaV1.7 over NaV1.5 and highly efficacious in in vivo models of pain and hNaV1.7 target engagement. An analysis of the physicochemical properties of literature NaV1.7 inhibitors suggested that acyl sulfonamides with high fsp3 could overcome some of the pharmacokinetic (PK) and efficacy challenges seen with existing series. Parallel library syntheses lead to the identification of analogue 7, which exhibited moderate potency against NaV1.7 and an acceptable PK profile in rodents, but relatively poor stability in human liver microsomes. Further, design strategy then focused on the optimization of potency against hNaV1.7 and improvement of human metabolic stability, utilizing induced fit docking in our previously disclosed X-ray cocrystal of the NaV1.7 voltage sensing domain. These investigations culminated in the discovery of tool compound 33, one of the most potent and efficacious NaV1.7 inhibitors reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.