Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life’s first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson–Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.
Translation
according to the genetic code is made possible by selectivity
both in aminoacylation of tRNA and in anticodon/codon recognition.
In extant biology, tRNAs are selectively aminoacylated by enzymes
using high-energy intermediates, but how this might have been achieved
prior to the advent of protein synthesis has been a largely unanswered
question in prebiotic chemistry. We have now elucidated a novel, prebiotically
plausible stereoselective aminoacyl-RNA synthesis, which starts from
RNA-amino acid phosphoramidates and proceeds via phosphoramidate-ester
intermediates that subsequently undergo conversion to aminoacyl-esters
by mild acid hydrolysis. The chemistry avoids the intermediacy of
high-energy mixed carboxy-phosphate anhydrides and is greatly favored
under eutectic conditions, which also potentially allow for the requisite
pH fluctuation through the variable solubility of CO
2
in
solid/liquid water.
The first ribozymes are thought to have emerged at a
time when
RNA replication proceeded via nonenzymatic template copying processes.
However, functional RNAs have stable folded structures, and such structures
are much more difficult to copy than short unstructured RNAs. How
can these conflicting requirements be reconciled? Also, how can the
inhibition of ribozyme function by complementary template strands
be avoided or minimized? Here, we show that short RNA duplexes with
single-stranded overhangs can be converted into RNA stem loops by
nonenzymatic cross-strand ligation. We then show that loop-closing
ligation reactions enable the assembly of full-length functional ribozymes
without any external template. Thus, one can envisage a potential
pathway whereby structurally complex functional RNAs could have formed
at an early stage of evolution when protocell genomes might have consisted
only of collections of short replicating oligonucleotides.
The encoding step of translation involves attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases, themselves the product of coded peptide synthesis. So, the question arises�before these enzymes evolved, how were primordial tRNAs selectively aminoacylated? Here, we demonstrate enzyme-free, sequence-dependent, chemoselective aminoacylation of RNA. We investigated two potentially prebiotic routes to aminoacyl-tRNA acceptor stem-overhang mimics and analyzed those oligonucleotides undergoing the most efficient aminoacylation. Overhang sequences do not significantly influence the chemoselectivity of aminoacylation by either route. For aminoacyltransfer from a mixed anhydride donor strand, the chemoselectivity and stereoselectivity of aminoacylation depend on the terminal three base pairs of the stem. The results support early suggestions of a second genetic code in the acceptor stem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.