Research on Pb free thermoelectric materials as a potential source of eco-friendly and solid-state source of energy has continuously advanced over time, with SnTe-based materials having shown utmost promising properties...
SnTe is an exceptionally promising eco-friendly thermoelectric material that continues to draw immense interest as a source of alternative energy recovered from waste heat energy. Here, we investigate the effect of introducing Cu as a single doping element rather than phase separated in SnTe followed by Sb co-doping to tune the lattice thermal conductivity. A microstructure evolution was observed which influences the thermoelectric performance of these SnTe-based materials. An overall power factor of ∼22 μW/cmK 2 and an ultralow lattice thermal conductivity of 0.39 W/mK are reported. A maximum ZT of 0.86 is also reported with an all-time record high hardness value of 165 Hv among SnTe-based thermoelectric materials. Through DFT calculations, we show that Cu opens the band gap of SnTe, whereas Sb in the presence of Cu introduces resonance levels and causes band convergence. This kind of enhanced thermoelectric performance is paramount for the application of SnTe in recovery of heat into useful electrical energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.