The quest to create a vaccine for covid-19 has rekindled hope for most people worldwide, with the anticipation that a vaccine breakthrough would be one step closer to the end of the deadly Covid-19. The pandemic has had a bearing on the use of Twitter as a communication medium to reach a wider audience. This study examines Covid-19 vaccine-related discussions, concerns, and Twitter-emerged sentiments about the Covid-19 vaccine rollout program. Natural Language Processing (NLP) techniques were applied to analyze Covid-19 vaccine-related tweets. Our analysis identified popular n-grams and salient themes such as "vaccine health information," "vaccine distribution and administration," "vaccine doses required for immunity," and "vaccine availability." We apply machine learning algorithms and evaluate their performance using the standard metrics, namely accuracy, precision, recall, and f1-score. Support Vector Machine (SVM) classifier proves to be the best fit on the dataset with 84.32% accuracy. The research demonstrates how Twitter data and machine learning methods can study the evolving public discussions and sentiments concerning the Covid-19 vaccine rollout program. Povzetek: Narejena je analiza čivkov na Twitterju glede cepiv za
When the Transformer proposed by Google in 2017, it was first used for machine translation tasks and achieved the state of the art at that time. Although the current neural machine translation model can generate high quality translation results, there are still mistranslations and omissions in the translation of key information of long sentences. On the other hand, the most important part in traditional translation tasks is the translation of key information. In the translation results, as long as the key information is translated accurately and completely, even if other parts of the results are translated incorrect, the final translation results' quality can still be guaranteed. In order to solve the problem of mistranslation and missed translation effectively, and improve the accuracy and completeness of long sentence translation in machine translation, this paper proposes a key information fused neural machine translation model based on Transformer. The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder. After the same encoding as the source language text, it is fused with the output of the source language text encoded by the encoder, then the key information is processed and input into the decoder. With incorporating keyword information from the source language sentence, the model's performance in the task of translating long sentences is very reliable. In order to verify the effectiveness of the method of fusion of key information proposed in this paper, a series of experiments were carried out on the verification set. The experimental results show that the Bilingual Evaluation Understudy (BLEU) score of the model proposed in this paper on the Workshop on Machine Translation (WMT) 2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset. The experimental results show the advantages of the model proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.