Scaffolds that are used for bone repair should provide an adequate environment for biomineralization by mesenchymal stem cells (MSCs). Recently, decellularized pulp matrices (DPM) have been utilized in endodontics for their high regenerative potential. Inspired by the dystrophic calcification on the pulp matrix known as pulp stone, we developed acellular pulp bioscaffolds and examined their potential in facilitating MSCs mineralization for bone defect repair. Pulp was decellularized, then retention of its structural integrity was confirmed by histological, mechanical, and biochemical evaluations. MSCs were seeded and proliferation, osteogenic gene expression, and biomineralization were assessed to verify DPM’s osteogenic effects in vitro. MicroCT, energy-dispersive X-ray (EDX), and histological analyses were used to confirm that DPM seeded with MSCs result in greater mineralization on rat critical-sized defects than that without MSCs. Overall, our study proves DPM’s potential to serve as a scaffolding material for MSC-mediated bone regeneration for future craniofacial bone tissue engineering.
Inert biomaterials used for auricular reconstruction, which is one of the most challenging and diverse tasks in craniofacial or head and neck surgery, often cause problems such as capsule formation, infection, and skin extrusion. To solve these problems, scaffold consisting of inert biomaterial, high-density polyethylene (Medpor®) encapsulated with neocartilage, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) was created using a tissue engineering strategy. PLGA scaffold without Medpor® was created to serve as the control. Scaffolds were vacuum-seeded with rabbit chondrocytes, freshly isolated from the ear by enzymatic digestion. Then, cell-seeded scaffolds were implanted subcutaneously in the dorsal pockets of nude mice. After 12 weeks, explants were analyzed by histological, biochemical, and mechanical evaluations. Although the PLGA group resulted in neocartilage formation, the PLGA–Medpor® group demonstrated improved outcome with the formation of well-surrounded cartilage around the implants with higher mechanical strength than the PLGA group, indicating that Medpor® has an influence on the structural strength of engineered cartilage. The presence of collagen and elastin fibers was evident in the histological section in both groups. These results demonstrated a novel method of coating implant material with engineered cartilage to overcome the limitations of using biodegradable scaffold in cartilage tissue regeneration. By utilizing the patient’s own chondrocytes, our proposed method may broaden the choice of implant materials while minimizing side effects and immune reaction for the future medical application.
Homozygous familial hypercholesterolemia (HoFH) is a rare inherited disorder that presents as abnormally elevated levels of low-density lipoprotein cholesterol and premature heart disease, requiring frequent intervention through lipid apheresis for management. The risk of perioperative cardiac events is higher in patients with HoFH because of its pathophysiological manifestations in the vascular system. Careful cardiac precautions and anesthetic assessments are necessary to ensure patient safety. In the following case report, we discuss the clinical course and anesthetic considerations for a 14-year-old girl with HoFH undergoing sedation for dental extractions and mandibular molar uprighting in an outpatient oral surgery clinic. Considerations included the use of heparin in the patient's weekly plasma lipid apheresis treatment. In order to reduce the risks of peri-and postoperative bleeding and perioperative cardiac events, the operation was scheduled for 4 days after apheresis. This allowed for adequate heparin clearance, while also reducing the likelihood of possible cardiac events. A literature review revealed no results for the outpatient management of patients with HoFH undergoing sedation for noncardiac procedures. Our reported case serves as a clinical example for physicians to be utilized in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.