As an inevitable process, the number of older adults is increasing in many countries worldwide. Two of the main problems that society is being confronted with more and more, in this respect, are the inter-related aspects of feelings of loneliness and social isolation among older adults. In particular, the ongoing COVID-19 crisis and its associated restrictions have exacerbated the loneliness and social-isolation problems. This paper is first and foremost a comprehensive survey of loneliness monitoring and management solutions, from the multidisciplinary perspective of technology, gerontology, socio-psychology, and urban built environment. In addition, our paper also investigates machine learning-based technological solutions with wearable-sensor data, suitable to measure, monitor, manage, and/or diminish the levels of loneliness and social isolation, when one also considers the constraints and characteristics coming from social science, gerontology, and architecture/urban built environments points of view. Compared to the existing state of the art, our work is unique from the cross-disciplinary point of view, because our authors’ team combines the expertise from four distinct domains, i.e., gerontology, social psychology, architecture, and wireless technology in addressing the two inter-related problems of loneliness and social isolation in older adults. This work combines a cross-disciplinary survey of the literature in the four aforementioned domains with a proposed wearable-based technological solution, introduced first as a generic framework and, then, exemplified through a simple proof of concept with dummy data. As the main findings, we provide a comprehensive view on challenges and solutions in utilizing various technologies, particularly those carried by users, also known as wearables, to measure, manage, and/or diminish the social isolation and the perceived loneliness among older adults. In addition, we also summarize the identified solutions which can be used for measuring and monitoring various loneliness- and social isolation-related metrics, and we present and validate, through a simple proof-of-concept mechanism, an approach based on machine learning for predicting and estimating loneliness levels. Open research issues in this field are also discussed.
The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO, air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.
Loneliness and social isolation are subjective measures associated with the feeling of discomfort and distress. Various factors associated with the feeling of loneliness or social isolation are: the built environment, long-term illnesses, the presence of disabilities or health problems, etc. One of the most important aspect which could impact feelings of loneliness is mobility. In this paper, we present a machine-learning based approach to classify the user loneliness levels using their indoor and outdoor mobility patterns. User mobility data has been collected based on indoor and outdoor sensors carried on by volunteers frequenting an elderly nursing house in Tampere region, Finland. The data was collected using Pozyx sensor for indoor data and Pico minifinder sensor for outdoor data. Mobility patterns such as the distance traveled indoors and outdoors, indoor and outdoor estimated speed, and frequently visited clusters were the most relevant features for classifying the user’s perceived loneliness levels.Three types of data used for classification task were indoor data, outdoor data and combined indoor-outdoor data. Indoor data consisted of indoor mobility data and statistical features from accelerometer data, outdoor data consisted of outdoor mobility data and other parameters such as speed recorded from sensors and course of a person whereas combined indoor-outdoor data had common mobility features from both indoor and outdoor data. We found that the machine-learning model based on XGBoost algorithm achieved the highest performance with accuracy between 90% and 98% for indoor, outdoor, and combined indoor-outdoor data. We also found that Lubben-scale based labelling of perceived loneliness works better for both indoor and outdoor data, whereas UCLA scale-based labelling works better with combined indoor-outdoor data.
This paper presents a data-driven approach for the prognosis of the gradual behavioural deterioration of conveyor belts used for the transportation of pallets between processing workstations of discrete manufacturing systems. The approach relies on the knowledge of the power consumption of a conveyor belt motor driver. Data are collected for two separate cases: the static case and dynamic case. In the static case, power consumption data are collected under different loads and belt tension. These data are used by a prognostic model (artificial neural network (ANN)) to learn the conveyor belt motor driver’s power consumption pattern under different belt tensions and load conditions. The data collected during the dynamic case are used to investigate how the belt tension affects the movement of pallets between conveyor zones. During the run time, the trained prognostic model takes real-time power consumption measurements and load information from a testbench (a discrete multirobot mobile assembling line) and predicts a belt tension class. A consecutive mismatch between the predicted belt tension class and optimal belt tension class is an indication of failure, i.e., a gradual loss of belt tension. Hence, maintenance steps must be taken to avoid further catastrophic situations such as belt slippages on head pulleys, material slippages and belt wear and tear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.