During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "concentrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond.This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.
NASAs Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin‐stabilized spacecraft in similar highly elliptic orbits reaching apogee distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on‐board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest‐altitude operational use of GPS to date. In this paper, we highlight past and ongoing high‐altitude GPS research in and outside of GSFC, describe the MMS GPS navigation system, and present on‐orbit performance data from the first phase of the mission. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications for future high‐altitude GPS navigation. Copyright © 2017 Institute of Navigation.
The Neutron Star Interior Composition Explorer (NICER) is an X-ray astrophysics payload on the International Space Station. It enables unprecedented high-precision timing of millisecond pulsars without the pulse broadening and delays due to dispersion and scattering within the interstellar medium that plague radio timing. We present initial timing results from a year of data on the millisecond pulsars PSR B1937+21 and PSR J0218+4232, and nine months of data on PSR B1821−24. NICER time-of-arrival uncertainties for the three pulsars are consistent with theoretical lower bounds and simulations based on their pulse shape templates and average source and background photon count rates. To estimate timing stability, we use the σ z measure, which is based on the average of the cubic coefficients of polynomial fits to subsets of timing residuals. So far we are achieving timing stabilities σ z ≈ 3×10 −14 for PSR B1937+21 and on the order of 10 −12 for PSRs B1821−24 and J0218+4232. Within the span of our NICER data we do not yet see the characteristic break point in the slope of σ z ; detection of such a break would indicate that further improvement in the cumulative root-mean-square (RMS) timing residual is limited by timing noise. We see this break point in our comparison radio data sets for PSR B1821−24 and PSR B1937+21 on time scales of > 2 years.
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station, launched in June of 2017. In late 2017, SEX-TANT successfully completed a first demonstration of in-space and autonomous X-ray pulsar navigation (XNAV). This form of navigation relies on processing faint signals from millisecond pulsars-rapidly rotating neutron stars that appear to pulsate in the X-ray band-and could potentially provide a GPS-like navigation capability applicable throughout the solar-system and beyond. In this work, we briefly review prior SEXTANT results and then present new results focusing on: making use of the high-flux but rotationally unstable Crab pulsar, and using XNAV to estimate position, velocity, and time in the presence of an imperfect local clock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.