In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.
We present a data-driven method to infer the redshift distribution of an arbitrary dataset based on spatial cross-correlation with a reference population and we apply it to various datasets across the electromagnetic spectrum to show its potential and limitations. Our approach advocates the use of clustering measurements on all available scales, in contrast to previous works focusing only on linear scales. We also show how its accuracy can be enhanced by optimally sampling a dataset within its photometric space rather than applying the estimator globally. We show that the ultimate goal of this technique is to characterize the mapping between the space of photometric observables and redshift space as this characterization then allows us to infer the clustering-redshift p.d.f. of a single galaxy. We apply this technique to estimate the redshift distributions of luminous red galaxies and emission line galaxies from the SDSS, infrared sources from WISE and radio sources from FIRST. We show that consistent redshift distributions are found using both quasars and absorber systems as reference populations. This technique brings valuable information on the third dimension of astronomical datasets. It is widely applicable to a large range of extra-galactic surveys.
Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8-99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6-99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds.
The purpose of this work is to define fiducial points in the seismocardiogram (SCG) and to correlate them with physiological events identified in ultrasound images. For 45 healthy subjects the SCG and the electrocardiogram (ECG) were recorded simultaneously at rest. Immediately following the SCG and ECG recordings ultrasound images of the heart were also obtained at rest. For all subjects a mean SCG signal was calculated and all fiducial points (peaks and valleys) were identified and labeled in the same way across all signals. Eight physiologic events, including the valve openings and closings, were annotated from ultrasound as well and the fiducial points were correlated with those physiologic events. A total of 42 SCG signals were used in the data analysis. The smallest mean differences (±SD) between the eight events found in the ultrasound images and the fiducial points, together with their correlation coefficients (r) were: atrial systolic onset: −2 (±16) ms, r = 0.75 (p < 0.001); peak atrial inflow: 13 (±19) ms, r = 0.63 (p < 0.001); mitral valve closure: 4 (±11) ms, r = 0.71 (p < 0.01); aortic valve opening: −3 (±11) ms, r = 0.60 (p < 0.001); peak systolic inflow: 13 (±23) ms, r = 0.42 (p < 0.01); aortic valve closure: −5 (±12) ms, r = 0.94 (p < 0.001); mitral valve opening: −7 (±19) ms, r = 0.87 (p < 0.001) and peak early ventricular filling: −18 (±28 ms), r = 0.79 (p < 0.001). In conclusion eight physiologic events characterizeing the cardiac cycle, are associated with reproducible, well-defined fiducial points in the SCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.