We discuss a novel paradigm in the optical readout of scintillation radiation detectors. In one common configuration, such detectors are homogeneous and the scintillation light is collected and recorded by external photodetectors. It is usually assumed that imaging in such a photon-starved and large-emittance regime is not possible. Here we show that the appropriate optics, matched with highly segmented photodetector coverage and dedicated reconstruction software, can be used to produce images of the radiation-induced events. In particular, such a "distributed imaging" system can discriminate between events produced as a single cluster and those resulting from more delocalized energy depositions. This is crucial in discriminating many common backgrounds at MeV energies. With the use of simulation, we demonstrate the performance of a detector augmented with a practical, if preliminary, set of optics. Finally, we remark that this new technique lends itself to be adapted to different detector sizes and briefly discuss the implications for a number of common applications in science and technology.
Nodal aberration theory is used to calculate the third-order aberrations that result in image blur for an unobscured modified 4f relay (2f1 + 2f2) formed by two tilted spherical mirrors for objects at infinity (infinite conjugate) and near the front focal plane of the first mirror (finite conjugate). The field-averaged wavefront variance containing only non-rotationally symmetric aberration coefficients is then proposed as an optimization metric. Analytical and ray tracing optimization are demonstrated through sample designs. The particular cases of in-plane and orthogonal folding of the optical axis ray are discussed, followed by an analysis of a modified 2f1 + 2f2 relay in which the distance of the first mirror to the object or pupil is allowed to vary for aberration correction. The sensitivity of the infinite conjugate 2f1 + 2f2 relay to the input marginal ray angle is also examined. Finally, the optimization of multiple conjugate systems through a weighted combination of wavefront variances is proposed.
A combined 32° full field of view refractive fundus camera and fixation target with a 20 to +10 diopter sphere correction range is described and demonstrated. The optical setup partially corrects the average longitudinal chromatic aberration and spherical aberration of the human eye, while providing a long eye relief to allow integration with reflective adaptive optics ophthalmoscopes, as a viewfinder. The fundus camera operates with 940 nm light, using a maximum 2.9 mm diameter imaging pupil at the eye. The fixation target uses a light projector capable of delivering red, green and/or blue spatially and temporally modulated stimuli to the retina. The design and performance of each subsystem are discussed, and retinal imaging at various wavelengths is demonstrated.
An off-axis monocular pupil tracker designed for eventual integration in ophthalmoscopes for eye movement stabilization is described and demonstrated. The instrument consists of light-emitting diodes, a camera, a field-programmable gate array (FPGA) and a central processing unit (CPU). The raw camera image undergoes background subtraction, field-flattening, 1-dimensional low-pass filtering, thresholding and robust pupil edge detection on an FPGA pixel stream, followed by least-squares fitting of the pupil edge pixel coordinates to an ellipse in the CPU. Experimental data suggest that the proposed algorithms require raw images with a minimum of ∼32 gray levels to achieve sub-pixel pupil center accuracy. Tests with two different cameras operating at 575, 1250 and 5400 frames per second trained on a model pupil achieved 0.5-1.5 μm pupil center estimation precision with 0.6-2.1 ms combined image download, FPGA and CPU processing latency. Pupil tracking data from a fixating human subject show that the tracker operation only requires the adjustment of a single parameter, namely an image intensity threshold. The latency of the proposed pupil tracker is limited by camera download time (latency) and sensitivity (precision).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.