Background The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. Methods WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. Results High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. Conclusions The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance. Graphical Abstract
Arthropod-borne viruses (Arboviruses) replicate in vertebrates and invertebrates and are mainly transmitted by mosquitoes. Between 2000 and 2021, several arbovirus outbreaks were recorded in African countries, including dengue, yellow fever, Chikungunya, Zika, and O’nyong nyong. Most often, the causes and factors involved in these outbreaks are unknown. We aimed to understand current knowledge regarding factors responsible for the persistent transmission and emergence of mosquito-borne arboviruses in Africa and to identify critical research gaps important for preventing future outbreaks. We used a systematic literature review between 2020 and 2021, to show that the main identified factors favoring the arbovirus outbreak in Africa are low vaccination coverage, high density and diversity of competent mosquitoes, insecticide resistance of mosquito vectors, and a scarcity of data on arboviruses. Further studies on arboviruses may include studies of competence to viral strains and the susceptibility of mosquito vectors to insecticides. Because of the detrimental effects of insecticides on human health and the environment, viral paratransgenesis and other biological control methods should be explored as alternatives or as supplements to insecticides. Graphical abstract Illustration of factors identified for promoting the transmission of arbovirus in Africa. The main factors are the lack of drugs and vaccines, low coverage of vaccination when a vaccine exists, competence of mosquitoes to viruses, diversity and high density of vectors. Climate change, urbanization, deforestation and agricultural practices, lead to a richness and high density of vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.