The in-plane rotation of magnetic stripe domains in a 65 nm magnetostrictive Fe0.8Ga0.2 epitaxial film was investigated combining magnetic force microscopy, vibration sample magnetometry, and x-ray resonant magnetic scattering measurements. We analyzed the behavior of the stripe pattern under the application of a bias magnetic field along the in-plane direction perpendicular to the stripes axis, and made a comparison with the analogous behavior at remanence. The experimental results have been explained by means of micromagnetic simulations, supported by energy balance considerations. Fields smaller than ∼ 400 Oe do not induce any stripe rotation; rather, a deformation of the closure domains pattern was evidenced. Larger fields produce a sudden rotation of the stripe structure.
A comprehensive investigation of rotatable anisotropy in a Fe 0.8 Ga 0.2 thin film with a stripe domain structure has been performed comparing static and dynamic measurements. The stripes' domain formation and their rotation under a transverse magnetic field have been imaged by magnetic force microscopy. The rotatable anisotropy field H rot was determined by fitting the frequency evolution of the dipole-dominated magnetostatic spin-wave mode versus the in-plane orientation of the stripe domains, measured by Brillouin light scattering in the absence of any dc or ac magnetic field. We obtained H rot ≈ 1.35 kOe, which is nearly ten times larger than the crystallographic in-plane anisotropy field. By applying a dc magnetic field along the stripes' axis, H rot decreases, and eventually vanishes for saturated in-plane magnetization. At remanence, we established a quantitative relationship between static and dynamic properties, that is, the stripes' rotation angle and the in-plane angle dependence of spin-wave frequency.
In this work we show the development of bulk in-plane magnetic anisotropy in high Gacontent (Ga = 28 at. %) Fe 100-x Ga x thin films as the layer thickness increases. This result is in clear contrast with the generally reported decrease of this anisotropy with the film thickness. We propose the interrelation between the enhancement of the Ga-pair correlations and a collinear distortion of the bcc structure within the sample plane as the origin of the magnetic anisotropy. Our results have been obtained by employing a combination of long and local range structural probe techniques with bulk and surface magnetic characterization techniques. The key point shown in this work is that the inplane structural anisotropy and hence, the magnetic anisotropy, are developed as the layer thickness increases. This fact strongly suggests that the surface to bulk free energy ratio plays a key role in the formation of ordered phases with a distorted bcc cell in Fe 100-x Ga x films with x around 28 at. %. Our work also shows the arising of new phenomena in these high Ga content alloys due to the close correlation between structural and magnetic properties.
Ferromagnetic thin films with moderate perpendicular magnetic anisotropy (PMA) are known to support weak stripe domains provided film thickness exceeds a critical value. In this work, we performed both an experimental and theoretical investigation of a peculiar phenomenon shown by weak stripe domains: namely, the stripe domains reorientation when a dc magnetic field is applied in the film plane along the direction perpendicular to the stripes axis. We focus on bct α′-Fe 8 N 1−x thin films obtained by + N 2 implantation of α-Fe films epitaxially grown on ZnSe/GaAs(001). By using different ion implantation and heat treatment conditions, we show that it is possible to tune the PMA values. Magnetic force microscopy and vibrating sample magnetometer measurements prove the existence of weak stripe domains at remanence, and of a threshold field for the reorientation of the stripes axis in a transversal field. Using a one-dimensional model of the magnetic stripe domains, where the essential parameter is the maximum canting angle of the stripe magnetization out of the film plane, the various contributions to the magnetic energy can be separately calculated. A linear increase of the reorientation threshold field on the PMA is obtained, in qualitative agreement with experimental data in our Fe-N films, as well as in other thin films with weak stripe domains. Finally, we find that also the rotatable anisotropy field linearly increases as a function of the PMA magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.