Untreated sewage and industrial wastes from Faisalabad city are disposed to River Chenab through Chakbandi Main Drain (CMD). The present project is planned to investigate the effects of this freshwater pollution on the body of fish Ictalurus punctatus. The specimens of this fish species were collected upstream and downstream of the entrance of CMD into River Chenab. Fish gills, liver, kidney and muscles from dorsolateral regions of fish were subjected to histopathology. Farmed fish and fish from upstream areas were used as control. Fish collected from polluted experimental sites showed significant damage in selected organs. Gill tissues showed an abnormality in the form of an uplifting of the primary epithelium, fusion, vacuolation, hypertrophy, and necrosis. While liver tissues subjected to hepatocytes degeneration, necrosis, mitochondrial granular hepatocyte, and sinusoids dilation. Kidney tissues indicated increased bowmen space and constricted glomerulus and degenerated nephrons. Edema, necrosis, and atrophy were observed in muscle tissues of fish from polluted areas. Fish from the upstream area showed fused gill lamellae, inflammatory cell infiltration, hypertrophy and vacuolation in hepatocytes. Kidney tissues indicated the presence of nuclear tubular cells, destructive renal tubules, hemorrhage, and necrosis at tubular epithelium. Intra myofibril spaces were also observed in muscles. Specimens of control fish indicated no variation in gills, liver, kidney, and muscles. The present study revealed a strong correlation between the degree of tissue damage and environmental contamination. Present findings also compel global warnings to protect our water bodies and fish to rescue the human population.
Hepatitis C virus (HCV) is a blood-borne pathogen that represents a major health concern as the virus accounts for chronic infection which is associated with several morbidities, including liver cirrhosis and hepatocellular carcinoma (HCC). 1,2 About one-third of liver transplantation recipients are associated with HCV-related complications, including decompensated cirrhosis or HCC. 3,4 The development of direct-acting antiviral (DAA) is highly effective, offers sound tolerability and exhibits high sustained virological response (SVR), thereby substantially modifying the treatment landscape. 5 However, adverse effects exist in individuals with advanced hepatic
The present study aimed to determine the degree of changes in the histological architecture of the liver, gills, kidneys, and muscles of fish Oreochromis niloticus collected from different polluted river sites. Fish samples collected from the Faisalabad Fish Hatchery and upstream of Chakbandi drain acted as a control. Necrosis, hemorrhage, and epithelial hyperplasia were observed in the gills of fish inhabiting the river downstream of the Chakbandi drain entrance. Liver tissues were found to be affected by vacuolated cytoplasm, bile duct proliferation, melanomacrophages, and necrosis. In kidney tissues, shrinkage of the renal cortex, necrosis, and destructive renal tubules were observed. Histopathology of muscles indicates the presence of hypertrophy and swollen myofibers. In contrast, upstream specimens of fish exhibited mild tissue alterations. Histopathology of gills tissue showed vacuolization. Liver tissues indicated the presence of hypertrophy and more frequent Kupffer cells than usual. The vacuolation was also observed in kidney tissues. Muscle tissues expressed splitting of muscle fibres and degeneration in muscle bundles. However, sections of tissues collected from farmed fish have normal morphology and no anomalies. The histopathological assessment indicated various cellular, biochemical, and histological changes in response to the contamination in the vicinity of the fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.