Arabic natural language processing (ANLP) consists of developing techniques and tools that can utilize and analyze the Arabic language in both written and spoken contexts. ANLP makes an important contribution to many existing developed systems. It provides Arabic and non-Arabic speakers with helpful and convenient tools that can be used in different domains. Modern ANLP tools are developed using machine learning (ML) techniques. ML algorithms are widely used in NLP because of their high accuracy rate regardless of the robustness of the data that is used and because of the ease with which they can be implemented. On the other hand, the methodology of ANLP applications based on ML involves several distinct phases. It is, therefore, crucial to recognize and understand these phases in detail as well as the most widely used ML algorithms. This survey discusses this concept in detail, shows the involvement of ML techniques in developing such tools, and identifies well-known techniques used in ANLP. Moreover, this survey discusses the characteristics and complexity of the Arabic language in addition to the importance and needs of ANLP.INDEX TERMS Arabic natural language processing, classification, feature selection, machine learning.
In this article, to monitor the fields with square and circular geometries, three energy-efficient routing protocols are proposed for underwater wireless sensor networks. First one is sparsity-aware energy-efficient clustering, second one is circular sparsity-aware energy-efficient clustering, and the third one is circular depth-based sparsity-aware energy-efficient clustering routing protocol. All three protocols are proposed to minimize the energy consumption of sparse regions, whereas sparsity search algorithm is proposed to find sparse regions and density search algorithm is used to find dense regions of the network field. Moreover, clustering is performed in dense regions to minimize redundant transmissions of a data packet, while sink mobility is exploited to collect data from sensor nodes with an objective of minimum energy consumption. A depth threshold (d th) value is also used to minimize number of hops between source and destination for less energy consumption. Simulation results show that our schemes perform better than their counterpart schemes (depth-based routing and energy-efficient depth-based routing) in terms of energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.