Many workers have paid more attention to eco-friendly mesoporous silica silver nanoparticles featuring smaller particle sizes to enhance their remarkable antimicrobial properties. A simple chemical method was developed for synthesize high valence silver nanoparticles immobilized on the mesoporoussilica nanomaterial, which showed strong antibacterial activity. Chemical reduction of silver ion has been regarded in the present work, and a reducing agent , such as hydrazine was used to promote the reduction of the silver ionprecursor. The average particle size of the synthesized mesoporous silica-silver nanoparticles (Ag/NH 2-KIT-6(x)) with different concentrations of Ag (3.2 and 7.1%) calculated from Scherrer's equation for (1 1 1)plane were 8 and 6.5 nm respectively. The synthesized materials were characterized using X-Ray diffraction (XRD), FTIR spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), which revealed the mesoporous silica nanoparticles. Antibacterial activities of mesoporous silver nanoparticles against Gramnegative Pseudomonas aeruginosa(ATCC 9027) and Gram-positive Staphylococcus aureus(ATCC 43300) were found to be increased with the increasing of Ag concentration in the Ag/NH 2-KIT-6(x). The maximum inhibition zone diameter when the concentration 7.1 % was used obtained against P. aeruginosaand S. aureuswith diameters of 32 and 30 mm respectively. The antimicrobial activity of mesoporousAg/NH 2-KIT-6(x) was evaluated also using the MIC&MBC tests. The surface structures of both the untreated and the treated bacterial cells were examined by the aid of TEM. The treated bacterial cells were significantly changed, and major damage was observed in the outer cell membrane. In conclusion the use of AgNPs as antibacterialagentwasfoundtobetoxicagainstpathogenicbacteriaandconsidered
Organophosphorus pesticides (OP) are used extensively in many arenas including agriculture and industry leading to humans and agroecosystems disorders. Malathion is one of the OP that are used in agriculture to control pest and protect crops. Also, they harm non-target organisms and affect cruelly water sources, air, and soil quality. The present study aimed to isolate and identify a potent bacterial isolate capable of degrading malathion. Bacterial strain that isolated from Al Fayoum governorate, Egypt exhibited high efficiency for malathion biodegradation. Biodegradation process using minimal salt medium (MSM) supplemented with different malathion concentrations indicated that the bacterium was able to degrade and use malathion as a sole carbon source up to 700 mg/l at 37°C.The potent strain that exhibited biodegradation potential was identified as Bacillus sp. FYM31 and deposited into GenBank with the accession number OK325597. HPLC proved the effectiveness of malathion removal by Bacillus sp. FYM31 after 12 days of incubation to the level of 70.1% malathion (700 mg/l) degradation. Organophosphorus hydrolase (opd) gene was detected in the potent Bacillus sp. FYM31 strain. Due to the widespread usage of malathion in Egypt's agricultural areas, Bacillus sp. FYM31 can help bio-remediate the polluted areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.